Abstract:
In embodiments of translucent object presence and condition detection based on detected light intensity, a light is emitted and directed at a first edge of a translucent object along its thickness to pass through the translucent object, such as a lens. An intensity of the light is detected proximate an opposing, second edge of the translucent object. A presence and/or a condition of the translucent object can then be determined based on the detected intensity of the light that passes through the translucent object, where the detected intensity of the light that passes through the translucent object is relative and indicates one of: the presence of the translucent object based on a lower intensity of the light, or the translucent object is not present based on a higher intensity of the light.
Abstract:
An electronic device with automatic screen-cleaning function includes a film attached to a flexible display screen. The film includes heat-sensitive projections, light detection units, and heating circuit. Each light detection unit can detect a brightness value of light under the flexible display screen. The detected brightness value is evaluated against a predefined brightness value. When the detected brightness value does not equal the predefined brightness value, at least one electrical resistance heater element is controlled to generate heat, causing one of projections to bulge from the film. The bulging projection pushes out the flexible display screen, thus making dust or other external contaminant fall from the flexible display screen.
Abstract:
An auto-darkening filter of a welding shield has a brightness-sensing unit, an optical shutter and a processor. The brightness-sensing unit generates a first signal or a second signal. In a high-sensitivity mode, the processor controls the optical shutter to operate in a dark state or a bright state depending on intensity of the first signal being higher or lower than a threshold value. In a low-sensitivity mode, the processor controls the optical shutter to operate in the bright state when intensity of the second signal is lower than the threshold value, and automatically change to the high-sensitivity mode from the low-sensitivity mode when intensity of the second signal is higher than the threshold value.
Abstract:
A compensating current is applied at one or more points in a signal processing path to compensate for one or both of a dark or offset current present in an input signal. In certain implementations, the dark or offset current is present in a signal generated by a photomultiplier device. The dark or offset current may be monitored in an output of the signal processing path and, the monitoring being used to determine how much compensation is needed in the signal processing path and to allocate where in the signal processing path the compensation current will be applied.
Abstract:
A dark photodiode that is optically isolated from the signal photodiode and having a dark current in the absence of photons. A reference generating circuit configured to produce a reference voltage based on voltage at an anode of the signal photodiode. A voltage regulator circuit configured to regulate dark photodiode voltage at an anode of the dark photodiode based on the reference voltage. A current mirror circuit configured to produce, at an anode connecting to the signal photodiode, a mirrored current that is a mirrored version of a portion of the dark current.
Abstract:
In embodiments of object presence and condition detection, a light is emitted that is directed at a first edge of a translucent object to pass through the translucent object, such as a lens. An intensity of the light is detected proximate an opposing, second edge of the translucent object. A presence and/or a condition of the translucent object can then be determined based on the detected intensity of the light that passes through the object. The translucent object can be implemented as a multi-lens array, and a laser light is directed through optic surfaces of the multi-lens array with a laser. The presence and the condition of the multi-lens array can be continuously determined as a safety compliance of the laser light being directed through the multi-lens array.
Abstract:
A sensitivity adjustment device may include: a light receiver configured to receive a reflected light that has been emitted from a light emitting unit and reflected by a reflector, the light receiver being configured to convert the reflected light into an analog electrical signal; an A/D converter configured to convert the analog electrical signal into a digital signal; a threshold value calculator configured to calculate a threshold value with reference to a voltage level of the digital signal that has been sequentially converted and output by the A/D converter; and a determination unit configured to compare a high voltage level of the digital signal with the threshold value.
Abstract translation:灵敏度调节装置可以包括:被配置为接收从发光单元发射并被反射器反射的反射光的光接收器,所述光接收器被配置为将所述反射光转换为模拟电信号; A / D转换器,被配置为将模拟电信号转换为数字信号; 阈值计算器,被配置为参考由A / D转换器顺次转换并输出的数字信号的电压电平来计算阈值; 以及确定单元,被配置为将数字信号的高电压电平与阈值进行比较。
Abstract:
A light sensing apparatus includes a light sensing module, a signal conversion module and a processing module. The light sensing module is configured to output a first and second sense signals according to a light intensity emitting thereon. The signal conversion module is electrically coupled to the light sensing module and configured to receive the first and second sense signals and output a sense value according to a relative difference between the first and second sense signals, The comparison module is electrically coupled to the signal conversion module and configured to adjust a light sensing characteristic of the light sensing module according to the sense value so as to adjust a light sensing characteristic of the light sensing module. An adjustment method for a light sensing apparatus is also provided.
Abstract:
The present disclosure provides methods and apparatus for testing light-emitting diodes (LEDs), for example, measuring the optical radiation of an LED. In a method, a pulse-width modulated signal is provided to the LED. One or more characteristics of the PWM signal are varied so as to provide a forward voltage, Vf, corresponding to a target junction temperature, Tj, of the LED. The optical radiation of the LED is measured when the LED obtains the target junction temperature.
Abstract:
A system for field measurement and calibration of photovoltaic reference devices, including a reference device electronics unit that measures the electrical output of a photovoltaic reference module and provides data to determine the solar irradiance received by the reference module as a function of its electrical output; and a calibrator unit that is used to routinely recalibrate the reference device electronics unit and the reference module, wherein the calibrator unit contains one or more calibrated photovoltaic reference cell(s).