Abstract:
A two-step process is described that includes a pyrolytic first step and a catalytic fluid bed second step that without separation upgrades the resulting raw pyrolysis products, for the conversion of waste plastics, polymers, and other waste materials to useful chemical and fuel products such as paraffins, olefins, and aromatics such as BTX.
Abstract:
An improved process is provided for catalytic pyrolysis of biomass, comprising pneumatically injecting a biomass feed via a pneumatic injection line into a fluidized heat medium, for example, hot catalyst, with a carrier gas at a velocity of from 5 to 40 m/s in at least one mixing zone in communication with a pyrolysis reactor in which catalytic pyrolysis occurs, and maintaining a catalyst/biomass mixture flowrate ratio (C/B) of from 4 to 40 downstream from the point of catalyst injection via a catalyst injection line in the at least one mixing zone.
Abstract:
The invention comprises methods of robotically separating unwanted heteroatom-containing materials from a plastic mixture and catalytically pyrolyzing the resulting mixed plastics to obtain olefins and aromatics. Systems and compositions useful in the catalytic pyrolysis of plastics are also described.
Abstract:
The present invention provides a catalytic fast pyrolysis process for the production of fuel blendstocks and chemicals. In addition, the invention provides compositions of renewable blendstocks, compositions of renewable fuel blends, and compositions of 100 percent renewable fuels compatible with gasoline specifications and regulations.
Abstract:
The present invention provides an improved catalytic fast pyrolysis process for increased yield of useful and desirable products. In particular, the process comprises an improved catalytic fast pyrolysis process for producing aromatic compounds, such as, for example, benzene, toluene and xylenes, from biomass feedstock containing impurities, such as, for example alkali and alkaline earth metal, sulfur and nitrogen components.
Abstract:
An improved process is provided for catalytic pyrolysis of biomass, comprising pneumatically injecting a biomass feed via a pneumatic injection line into a fluidized heat medium, for example, hot catalyst, with a carrier gas at a velocity of from 5 to 40 m/s in at least one mixing zone in communication with a pyrolysis reactor in which catalytic pyrolysis occurs, and maintaining a catalyst/biomass mixture flowrate ratio (C/B) of from 4 to 40 downstream from the point of catalyst injection via a catalyst injection line in the at least one mixing zone.
Abstract:
The present invention provides an improved catalytic fast pyrolysis process for increased yield of useful and desirable products. In particular, the process comprises an improved catalytic fast pyrolysis process for producing aromatic compounds, such as, for example, benzene, toluene and xylenes, from biomass feedstock containing impurities, such as, for example alkali and alkaline earth metal, sulfur and nitrogen components.
Abstract:
Methods of separating and purifying products from the catalytic fast pyrolysis of biomass are described. In a preferred method, a portion of the products from a pyrolysis reactor are recovered and purified using a hydrotreating step that reduces the content of sulfur, nitrogen, and oxygen components, and hydrogenates olefins to produce aromatic products that meet commercial quality specifications.
Abstract:
A process that removes chlorine or other halogens from plastic mixtures by passing a plastic mixture through an extruder, a mixer, and one or more devolatilization vessels.