Abstract:
A thermostat is described for controlling air temperature in a building. The time associated with causing the controlled air temperature to reach a target temperature is estimated and displayed to a user. Input from a user indicating the target temperature can be received and the estimating and displaying can be carried out in real time. The thermostat can be wall-mounted or the user input can be received and estimated time can be displayed using a remote device, for example that communicates wirelessly with other components of the HVAC system.
Abstract:
A method is described for identifying faults relating to an HVAC system, such a clogged filter. Sensor data is used to estimate HVAC system efficiency. Trends in system efficiency are then used to identify faults such as clogged filters. The sensor(s) can include one or more of the following types: optical sensor, temperature sensor, pressure sensor, acoustic transducer, humidity sensor, resistive sensor, capacitive sensor, and infrared sensor. The efficiency estimation can also be based on conditions external to the building, such as data from exterior sensors and/or data gathered from third parties such as government or private weather stations. The efficiency estimation can also be based on performance metrics such as the time used to reach a set point temperature. The fault identification includes filtering out non-fault related events.
Abstract:
A thermostat and related methods are described for controlling one or more functions, such as heating and cooling in an HVAC. According to some embodiments the thermostat includes a rechargeable battery; charging circuitry adapted and arranged to recharge the battery; and control circuitry adapted and arranged to control the one or more HVAC functions using power from the rechargeable battery. According to some embodiments, the thermostat also includes power harvesting circuitry adapted and arranged to harvest power from the HVAC system in cases where no common wire is available to the thermostat, and to supply power to the charging circuit for recharging the battery.
Abstract:
Systems and methods are described for interactively and graphically displaying performance information to a user of an HVAC system controlled by a self-programming network-connected thermostat. The information is made on a remote display device such as a smartphone, tablet computer or other computer, and includes a graphical daily summary each of several days. In response to a user selection of a day, detailed performance information is graphically displayed that can include an indication of HVAC activity on a timeline, the number of hours of HVAC activity, as well as one or more symbols on a timeline indicating setpoint changes, and when a setpoint was changed due to non-occupancy.
Abstract:
A user-friendly programmable thermostat is described that includes a circular body having a large central display surrounded by a ring that can be rotated an pressed inward by a user so as to receive user input in a simple elegant fashion. Different colors can be displayed to the user to indicate currently active HVAC functions, and different shades of colors can be displayed to a user to indicate an estimated amount of time and/or energy for reaching a target temperature. The thermostat is wall mountable and is made up of a head unit removeably mounted to a backplate. A locking mechanism can be provided so as to increase security against unauthorized removal of the head unit. The backplate can be adapted to be mounted on a wall so as to be level, for example by including a bubble level on the backplate. One or more vents are preferably located on the sides of the body, such as in a gap beneath the translatably mounted ring, and/or in a gap between the head unit and the backplate. The target temperature for the device can be altered in response to sensing rotation of the rotating ring, and the programmed schedule can be displayed to and altered by the user in response to sensing rotation of the ring and the translational movement of the ring. Historical information such as temperature and cost information can be displayed to a user in response to sensing rotating of the rotating ring. One or more device settings can be displayed to and edited by a user in response to sensing rotating of the rotating member and the translational movement. According to some embodiments, text characters can be entered by the user.
Abstract:
A thermostat and related methods is provided for controlling an HVAC system having one or two separate transformers for supplying power to the HVAC system. The thermostat includes isolation circuitry housed within the thermostat to safely connect to the HVAC control wires and power wire(s) whether the HVAC system has one or two separate transformers without the use of removable jumpers or manual rewiring. The thermostat can include a processor that sends DC signals for turning on and turning off each of the HVAC functions, and an isolator adapted to electrically isolate the processor from the control wires and power wire(s). The isolator can include a transformer, such as a low cost Ethernet transformer. The circuitry can include one or more field effect transistors adapted and arranged so as to open or close an electrical connections between the control and power wires, thereby turning on or off the associated HVAC function. According to some embodiments, the Rc and Rh terminals are permanently connected using a fuse.
Abstract:
A thermostat and related methods is provided for controlling an HVAC system. The thermostat includes wiring terminals adapted and configured to make an electrical connection with an HVAC system wires such as common, heating and cooling control and return wires. The making of the connection with a common wire actuates switching open a loop of an electrical circuit used for power harvesting. According to some embodiments, the wiring terminal includes actuation of a moveable part of the terminal so as to accommodate the common wire that in turn actuates the switching open the power harvesting loop. More than one other loop can be switched. According to some embodiments, the wiring terminal can be used to automatically connect and/or disconnect Rc and Rh circuits when one or both Rc and Rh wires are present. According to some embodiments, the wiring terminal can be used for electronically sensing the presence of the HVAC system wire.
Abstract:
Systems and methods of placeshifting media playback between two or more devices are provided. For example, a method for placeshifting media may include sending a first message from a media-receiving electronic device to a media-playing electronic device playing a media file and receiving a response identifying the media file and a point at which the media file was being played when the first message was received. The media-receiving electronic device may play a copy of the media file at the point where the media-playing electronic device left off.
Abstract:
Systems and methods of placeshifting media playback between two or more devices are provided. For example, a method for placeshifting media may include downloading onto a first device an index of files accessed or modified on a second device via a data storage server, at least one of the files being a media file played on the second device. The first device may display a user selectable list of the files on the first device before issuing a request for the media file to the data storage server. The data storage server may send the media file to the first device from the data storage server, and the first device may play back the media file where the second device left off.