Abstract:
Aspects of the present invention provide user interface methods for interacting with and managing network-connected thermostats through a thermostat management system. The user interface method identifies a primary enclosure associated with a thermostat management account with the remaining enclosures deemed secondary enclosures. The user interface displays the primary enclosure using a primary enclosure selection appearing in a foreground area of the user interface as a house and adjacent to thermostat selections representing each of the network-connected thermostats installed in the primary enclosure. In a background area of the user interface, a primary weather visual incorporates images of various weather patterns reflecting both a weather pattern in the vicinity of the primary enclosure and an approximate time of day at the geographic location of the primary enclosure. Secondary enclosure selections are visually deemphasized on the user interface when compared with the primary enclosure selection displayed on the user interface.
Abstract:
A thermostat is configured for automated compatibility with HVAC systems that are either single-HVAC-transformer systems or dual-HVAC-transformer systems. The compatibility is automated in that a manual jumper installation is not required for adaptation to either single-HVAC-transformer systems or dual-HVAC-transformer systems. The thermostat has a plurality of HVAC wire connectors including a first call relay wire connector, a first power return wire connector, a second call relay wire connector, and a second power return wire connector. The thermostat is configured such that if the first and second external wires have been inserted into the first and second power return wire connectors, respectively, then the first and second power return wire connectors are electrically isolated from each other. Otherwise, the first and second power return wire connectors are electrically shorted together.
Abstract:
Systems and methods of placeshifting media playback between two or more devices are provided. For example, a method for placeshifting media may include sending a first message from a media-receiving electronic device to a media-playing electronic device playing a media file and receiving a response identifying the media file and a point at which the media file was being played when the first message was received. The media-receiving electronic device may play a copy of the media file at the point where the media-playing electronic device left off.
Abstract:
A thermostat management system facilitates an automatic pairing of a thermostat with a thermostat communication account. The thermostat management system receives a public network address associated with a computer device on a private network accessing the thermostat management account. The system retrieves the thermostat metadata including a public network address associated with a registration of the thermostat with the thermostat management system. The public network address registered with the thermostat metadata is provided by a router on the private network and therefore should match the public network address used by computer devices on the private network. The thermostat management account is paired with the thermostat if the thermostat has the same public network address as the computer device accessing the thermostat management account. Pairing the thermostat management account to the thermostat allows the thermostat management account to communicate with the thermostat over the public network through the thermostat management system.
Abstract:
Aspects of the present invention provide user interface methods for interacting with and managing network-connected thermostats through a thermostat management system. The user interface method identifies a primary enclosure associated with a thermostat management account with the remaining enclosures deemed secondary enclosures. The user interface displays the primary enclosure using a primary enclosure selection appearing in a foreground area of the user interface as a house and adjacent to thermostat selections representing each of the network-connected thermostats installed in the primary enclosure. In a background area of the user interface, a primary weather visual incorporates images of various weather patterns reflecting both a weather pattern in the vicinity of the primary enclosure and an approximate time of day at the geographic location of the primary enclosure. Secondary enclosure selections are visually deemphasized on the user interface when compared with the primary enclosure selection displayed on the user interface.
Abstract:
Systems and methods are described for predicting and/or detecting occupancy of an enclosure, such as a dwelling or other building, which can be used for a number of applications. An a priori stochastic model of occupancy patterns based on information of the enclosure and/or the expected occupants of the enclosure is used to pre-seed an occupancy prediction engine. Along with data from an occupancy sensor, the occupancy prediction engine predicts future occupancy of the enclosure. Various systems and methods for detecting occupancy of an enclosure, such as a dwelling, are also described.
Abstract:
Systems and methods for modeling the behavior of an enclosure for use by a control system of an HVAC system are described. A model for the enclosure that describes the behavior of the enclosure for use by the control system is updated based on a weather forecast data. The weather forecast data can include predictions more than 24 hours in the future, and can include predictions such as temperature, humidity and/or dew point, solar output, precipitation. The model for the enclosure can also be updated based on additional information and data such as historical weather data such as temperature, humidity, wind, solar output and precipitation, occupancy data, such as predicted and/or detected occupancy data, calendar data, and data from the one or more weather condition sensors that sense current parameters such as temperature, humidity, wind, precipitation, and/or solar output. The model for the enclosure can be updated based also on an enclosure model stored in a database, and/or on enclosure information from a user. The model can be updated based on active testing of the enclosure which can be performed automatically or in response to user input. The testing can include heating and/or cooling the enclosure at times when the enclosure is not likely to be occupied.
Abstract:
Systems and methods of placeshifting media playback between two or more devices are provided. For example, a method for placeshifting media may include downloading onto a first device an index of files accessed or modified on a second device via a data storage server, at least one of the files being a media file played on the second device. The first device may display a user selectable list of the files on the first device before issuing a request for the media file to the data storage server. The data storage server may send the media file to the first device from the data storage server, and the first device may play back the media file where the second device left off.
Abstract:
A thermostat and related methods is provided for controlling an HVAC system having one or two separate transformers for supplying power to the HVAC system. The thermostat includes isolation circuitry housed within the thermostat to safely connect to the HVAC control wires and power wire(s) whether the HVAC system has one or two separate transformers without the use of removable jumpers or manual rewiring. The thermostat can include a processor that sends DC signals for turning on and turning off each of the HVAC functions, and an isolator adapted to electrically isolate the processor from the control wires and power wire(s). The isolator can include a transformer, such as a low cost Ethernet transformer. The circuitry can include one or more field effect transistors adapted and arranged so as to open or close an electrical connections between the control and power wires, thereby turning on or off the associated HVAC function. According to some embodiments, the Rc and Rh terminals are permanently connected using a fuse.