Abstract:
A semiconductor device includes a substrate including an isolation region, and a resistor disposed over the isolation region, wherein the resistor includes an implant with an inverse box-like dopant profile that minimizes resistance variation from subsequent planarization variation. A contact is disposed over the resistor. A method of fabricating such a semiconductor device is also provided.
Abstract:
An apparatus includes a first device. The first device includes a first projection and a first gate structure, the first projection extending upwardly from a substrate and having a first channel region therein, and the first gate structure engaging the first projection adjacent the first channel region. The first structure includes an opening over the first channel region, and a conformal, pure metal with a low resistivity disposed in the opening. The apparatus also includes a second device that includes a second projection and a second gate structure, the second projection extending upwardly from the substrate and having a second channel region therein, and the second gate structure engaging the second projection adjacent the second channel region. The second structure includes a silicide disposed over the second channel region, wherein the silicide includes a metal that is the same metal disposed in the opening.
Abstract:
A transistor includes a notched fin covered under a shallow trench isolation layer. One or more notch may be used, the size of which may vary along a lateral direction of the fin. In some embodiments, The notch is formed using anisotropic wet etching that is selective according to silicon orientation. Example wet etchants are tetramethylammonium hydroxide (TMAH) or potassium hydroxide (KOH).
Abstract:
Provided is a method of fabricating a semiconductor device that includes forming first and second fins over first and second regions of a substrate, forming first and second gate structures over the first and second fins, the first and second gate structures including first and second poly gates, forming an inter-level dielectric (ILD) over the substrate, performing a chemical mechanical polishing on the ILD to expose the first and second poly gates, forming a mask to protect the first poly gate of the first gate structure, removing the second poly gate thereby forming a first trench, removing the mask, partially removing the first poly gate thereby forming a second trench, forming a work function metal layer partially filling the first and second trenches, forming a fill metal layer filling a remainder of the first and second trenches, and removing the metal layers outside the first and second trenches.
Abstract:
The embodiments of methods and structures disclosed herein provide mechanisms of performing doping an inter-level dielectric film, ILD0, surrounding the gate structures with a dopant to reduce its etch rates during the processes of removing dummy gate electrode layer and/or gate dielectric layer for replacement gate technologies. The ILD0 film may be doped with a plasma doping process (PLAD) or an ion beam process. Post doping anneal is optional.
Abstract:
A system and method of controlling charging process of an electronic device. The electronic device is installed with a battery and a protection circuit. The method includes setting a time interval to check a charging state of the electronic device, checking whether the battery is in an error state before a power supply charges the electronic device, and checking whether the electronic device is in an charging error state according to the time interval till the electronic device completes the charging process. When there is an abnormity, the method can output a message to a user and end the charging process using the protection circuit.
Abstract:
An integrated circuit device includes a gate region extending above a semiconductor substrate and extending in a first longitudinal direction. A first fin has a first sidewall that extends in a second longitudinal direction above the semiconductor substrate such that the first fin intersects the gate region. A second fin has a second sidewall extending in the second direction above the semiconductor substrate such that the second fin intersects the gate region. A shallow trench isolation (STI) region is formed in the semiconductor substrate between the first and second sidewalls of the first and second fins. A conductive layer disposed over the first insulating layer and over top surfaces of the first and second fins. A first insulating layer is disposed between an upper surface of the STI region and a lower surface of the conductive layer to separate the STI region from the conductive layer.
Abstract:
A system and method of controlling charging process of an electronic device. The electronic device is installed with a battery and a protection circuit. The method includes setting a time interval to check a charging state of the electronic device, checking whether the battery is in an error state before a power supply charges the electronic device, and checking whether the electronic device is in an charging error state according to the time interval till the electronic device completes the charging process. When there is an abnormity, the method can output a message to a user and end the charging process using the protection circuit.
Abstract:
The present invention proposes a nano-scale high-performance SOI MOSFET device and a process for manufacturing the same. The device is characterized by comprising: a metal oxide semiconductor, formed on the SOI substrate; a silicide layer (05), wherein a gate consists of a single full silicide gate (10), a high-K dielectric layer (08) and a part for work function modification (09); and source/drain (6) are complete through a silicide reaction and has a modified Schottky junction.
Abstract:
A method includes forming a first fin and a second fin extending above a semiconductor substrate, with a shallow trench isolation (STI) region between them. A space is defined between the first and second fins above a top surface of the STI region. A first height is defined between the top surface of the STI region and top surfaces of the first and second fins. A flowable dielectric material is deposited into the space. The dielectric material has a top surface above the top surface of the STI region, so as to define a second height between the top surface of the dielectric material and the top surfaces of the first and second fins. The second height is less than the first height. First and second fin extensions are epitaxially formed above the dielectric, on the first and second fins, respectively, after the depositing step.