Abstract:
A time domain signal analysis method is provided. The signal analysis method includes the following steps. A signal to be analyzed is received. The signal to be analyzed is iteratively sifted by using Empirical Mode Decomposition (EMD) to extract at least one intrinsic function (IMF). A normalized Hilbert transform is performed on the IMF. The transformed IMF includes phase information. The transformed IMF is processed by means of phase processing to obtain the processed IMF including angular frequency information. The foregoing signal analysis method could be utilized in an ultrasound imaging system to identify image information of ultrasound images.
Abstract:
Two new TLR2 agonists, VP1 and VP3, which are structural proteins of FMDV. Residues of VP3 responsible for TLR2 activation are identified. In vivo experiments showed that VP3-4xM2e is active as a vaccine adjuvant.
Abstract:
An active continuous DC power supply insulation malfunction detection circuit includes a leakage current detection unit, a positive voltage terminal compensation unit and a negative voltage terminal compensation unit respectively at a positive voltage terminal and a negative voltage terminal of the power supply system. The positive and negative voltage terminal compensation units include respectively a one-way discharger and a power source unit that are forward conducted. The invention can improve the shortcoming of the conventional detection techniques that use passive elements for detecting ground insulation deterioration by letting the power source unit discharge through the one-way discharger so that the leakage current detection unit can continuously detect and measure current variations passing through the positive and negative voltage terminals without interruption, and thereby easily obtain leakage current value and provide active and continuous detection of ground insulation deterioration.
Abstract:
An electronic torque wrench a wrench head unit adapted to engage and turn a fastener, a tubular first wrench body securely engaged with the wrench head unit, a tubular second wrench body coupled and aligned with the first wrench body by a fitting member to permit rotation of the second wrench body relative to the first wrench body, a mounting shell sleeved on the second wrench body for mounting a display unit to provide a display representing a measured torque. By rotation of the second wrench body, the display unit can be adjusted to a desired angular position for being viewed easily by the user.
Abstract:
A multi-layered material and a method for making the same are provided. The multi-layered material includes a first foamed layer, a substrate, a second foamed layer, and a surface layer. The first foamed layer has a plurality of first cells. The substrate is a fabric. The second foamed layer has a plurality of second cells. The foaming method of the second foamed layer is different from that of the first foamed layer. The size of the second cells is different from that of the first cells. The variation in size of the second cells is different from that of the first cells. The surface layer is disposed on the second foamed layer. Thus, when the multi-layered material is used as a surface cover of a ball, it can provide excellent resilience and control, and improve manufacturing efficiency.
Abstract:
A film deposition method of depositing a thin film by alternately supplying at least a first source gas and a second source gas to a substrate is disclosed. The film deposition method includes steps of evacuating a process chamber where the substrate is accommodated, without supplying any gas to the process chamber; supplying an inert gas to the process chamber until a pressure within the process chamber becomes a predetermined pressure; supplying the first source gas to the process chamber filled with the inert gas at the predetermined pressure without evacuating the process chamber; stopping supplying the first source gas to the process chamber and evacuating the process chamber; supplying the second source gas to the process chamber; and stopping supplying the second source gas to the process chamber and evacuating the process chamber.
Abstract:
An improved semiconductor device is provided whereby the semiconductor device is defined by a layered structure comprising a first dielectric layer, a data storage material disposed on the first dielectric layer, and a second dielectric layer disposed on the data storage material, the layered structured substantially forming the outer later of the semiconductor device. For example, the semiconductor device may be a SONOS structure having an oxide-nitride-oxide (ONO) film that substantially surrounds the SONOS structure. The invention also provides methods for fabricating the semiconductor device and the SONOS structure of the invention.
Abstract:
The disclosure relates to a dummy gate electrode of a semiconductor device. An embodiment comprises a substrate comprising a first surface; an insulation region covering a portion of the first surface, wherein the top of the insulation region defines a second surface; and a dummy gate electrode over the second surface, wherein the dummy gate electrode comprises a bottom and a base broader than the bottom, wherein a ratio of a width of the bottom to a width of the base is from about 0.5 to about 0.9.
Abstract:
The invention relates to integrated circuit fabrication, and more particularly to a metal gate electrode. An exemplary structure for a semiconductor device comprises a substrate comprising a major surface; a first rectangular gate electrode on the major surface comprising a first layer of multi-layer material; a first dielectric material adjacent to one side of the first rectangular gate electrode; and a second dielectric material adjacent to the other 3 sides of the first rectangular gate electrode, wherein the first dielectric material and the second dielectric material collectively surround the first rectangular gate electrode.