Abstract:
A photodiode sensor structure includes a first dopant type substrate with a first surface and a second dopant type well region with a second surface. The second dopant type well region is formed in the first dopant type substrate such that the first surface and the second surface are substantially co-planar to form a diode surface. An interface between the second dopant type well region and the first dopant type substrate at the diode surface forms a diode junction. A poly silicon region is formed along the periphery of the entire diode junction. The poly silicon region provides the p-n junction of the photodiode with a physical shield to prevent any process damage from being introduced after the poly silicon processing (including damages from processes such as dielectric deposition/pattern, metal deposition/pattern, and/or via/contact hole etching), thereby reducing leakage current. The poly silicon region can also provide the p-n junction of the photodiode with an electrical shield to prevent any possible trapped charges at higher levels of dielectric above the junctions to affect the surface potential and/or prevent the formation of conducting channels between the p-n regions, thereby reducing leakage current.
Abstract:
A semiconductor imager structure having a photodiode being provided as a well region formed within a substrate layer and a transistor electrically connected to the photodiode and having a terminal that has a same electrical potential as the photodiode. The well region of the photodiode having an extended portion so that at least a portion of the terminal of the transistor has the same electrical potential as the photodiode is formed within the extended portion of the well region of the photodiode.
Abstract:
A method for making an array of photodiodes with more uniform optical spectral response for the red, green, and blue pixel cells on a CMOS color imager is achieved. After forming a field oxide on a substrate to electrically isolate device areas for CMOS circuits, an array of deep N doped wells is formed for photodiodes for the long wavelength red pixel cells. An array of P doped well regions is formed adjacent to and interlaced with the N doped wells. Shallow diffused N+ regions are formed within the P doped wells for the shorter wavelength green and blue color pixels cells. The shallow diffused photodiodes improve the quantum efficiency (QE), and provide a color imager with improved color fidelity. An insulating layer and appropriate dye materials are deposited and patterned over the photodiodes to provide the array of color pixel cells. The N and P doped wells are also used for the supporting FET CMOS circuits to provide a cost-effective manufacturing process.
Abstract:
A method for making an array of photodiodes with more uniform optical spectral response for the red, green, and blue pixel cells on a CMOS color imager is achieved. After forming a field oxide on a substrate to electrically isolate device areas for CMOS circuits, an array of deep N doped wells is formed for photodiodes for the long wavelength red pixel cells. An array of P doped well regions is formed adjacent to and interlaced with the N doped wells. Shallow diffused N+ regions are formed within the P doped wells for the shorter wavelength green and blue color pixels cells. The shallow diffused photodiodes improve the quantum efficiency (QE), and provide a color imager with improved color fidelity. An insulating layer and appropriate dye materials are deposited and patterned over the photodiodes to provide the array of color pixel cells. The N and P doped wells are also used for the supporting FET CMOS circuits to provide a cost-effective manufacturing process.
Abstract:
An image sensor device including a semiconductor substrate that includes an array region and a black level correction region. The array region contains a plurality of radiation-sensitive pixels. The black level correction region contains one or more reference pixels. The substrate has a front side and a back side. The image sensor device includes a first compressively-stressed layer formed on the back side of the substrate. The first compressively-stressed layer contains silicon oxide, and is negatively charged. The second compressively-stressed layer contains silicon nitride, and is negatively charged. A metal shield is formed over at least a portion of the black level correction region. The image sensor device includes a third compressively-stressed layer formed on the metal shield and the second compressively-stressed layer. The third compressively-stressed layer contains silicon oxide. A sidewall of the metal shield is protected by the third compressively-stressed layer.
Abstract:
A method includes performing a grinding to a backside of a semiconductor substrate, wherein a remaining portion of the semiconductor substrate has a back surface. A treatment is then performed on the back surface using a method selected from the group consisting essentially of a dry treatment and a plasma treatment. Process gases that are used in the treatment include oxygen (O2). The plasma treatment is performed without vertical bias in a direction perpendicular to the back surface.
Abstract:
Provided is a method of fabricating a semiconductor device that includes providing a semiconductor substrate having a front side and a back side, forming a first circuit and a second circuit at the front side of the semiconductor substrate, bonding the front side of the semiconductor substrate to a carrier substrate, thinning the semiconductor substrate from the back side, and forming an trench from the back side to the front side of the semiconductor substrate to isolate the first circuit from the second circuit.
Abstract:
Provided is a method of forming and/or using a backside-illuminated sensor including a semiconductor substrate having a front surface and a back surface. A transfer transistor and a photodetector are formed on the front surface. The gate of the transfer transistor includes an optically reflective layer. The gate of the transfer transistor, including the optically reflective layer, overlies the photodetector. Radiation incident the back surface and tratversing the photodetector may be reflected by the optically reflective layer. The reflected radiation may be sensed by the photodetector.
Abstract:
Provided is a method for fabricating an image sensor device that includes providing a substrate having a front side and a back side; patterning a photoresist on the front side of the substrate to define an opening having a first width, the photoresist having a first thickness correlated to the first width; performing an implantation process through the opening using an implantation energy correlated to the first thickness thereby forming a first doped isolation feature; forming a light sensing feature adjacent to the first doped isolation feature, the light sensing feature having a second width; and thinning the substrate from the back side so that the substrate has a second thickness that does not exceed twice a depth of the first doped isolation feature. A pixel size is substantially equal to the first and second widths.
Abstract:
A backside-illuminated sensor including a semiconductor substrate. The semiconductor substrate has a front surface and a back surface. A plurality of pixels are formed on the front surface of the semiconductor substrate. At least one pixel includes a photogate structure. The photogate structure has a metal gate that includes a reflective layer.