摘要:
An image sensor device including a semiconductor substrate that includes an array region and a black level correction region. The array region contains a plurality of radiation-sensitive pixels. The black level correction region contains one or more reference pixels. The substrate has a front side and a back side. The image sensor device includes a first compressively-stressed layer formed on the back side of the substrate. The first compressively-stressed layer contains silicon oxide, and is negatively charged. The second compressively-stressed layer contains silicon nitride, and is negatively charged. A metal shield is formed over at least a portion of the black level correction region. The image sensor device includes a third compressively-stressed layer formed on the metal shield and the second compressively-stressed layer. The third compressively-stressed layer contains silicon oxide. A sidewall of the metal shield is protected by the third compressively-stressed layer.
摘要:
Provided is a semiconductor image sensor device. The image sensor device includes a substrate. The image sensor device includes a first pixel and a second pixel disposed in the substrate. The first and second pixels are neighboring pixels. The image sensor device includes an isolation structure disposed in the substrate and between the first and second pixels. The image sensor device includes a doped isolation device disposed in the substrate and between the first and second pixels. The doped isolation device surrounds the isolation structure in a conformal manner.
摘要:
A method includes performing a grinding to a backside of a semiconductor substrate, wherein a remaining portion of the semiconductor substrate has a back surface. A treatment is then performed on the back surface using a method selected from the group consisting essentially of a dry treatment and a plasma treatment. Process gases that are used in the treatment include oxygen (O2). The plasma treatment is performed without vertical bias in a direction perpendicular to the back surface.
摘要:
A method includes performing a grinding to a backside of a semiconductor substrate, wherein a remaining portion of the semiconductor substrate has a back surface. A treatment is then performed on the back surface using a method selected from the group consisting essentially of a dry treatment and a plasma treatment. Process gases that are used in the treatment include oxygen (O2). The plasma treatment is performed without vertical bias in a direction perpendicular to the back surface.
摘要:
Provided is a semiconductor image sensor device. The image sensor device includes a substrate. The image sensor device includes a first pixel and a second pixel disposed in the substrate. The first and second pixels are neighboring pixels. The image sensor device includes an isolation structure disposed in the substrate and between the first and second pixels. The image sensor device includes a doped isolation device disposed in the substrate and between the first and second pixels. The doped isolation device surrounds the isolation structure in a conformal manner.
摘要:
A method for reducing stripe patterns comprising receiving scattered light signals from a backside surface of a laser annealed backside illuminated image sensor wafer, generating a backside surface image based upon the scattered light signals, determining a distance between an edge of a sensor array of the laser anneal backside illuminated image sensor wafer and an adjacent boundary of a laser beam and re-calibrating the laser beam if the distance is less than a predetermined value.
摘要:
The present disclosure relates to a method and composition to limit crystalline defects introduced in a semiconductor device during ion implantation. A high-temperature low dosage implant is performed utilizing a tri-layer photoresist which maintains the crystalline structure of the semiconductor device while limiting defect formation within the semiconductor device. The tri-layer photoresist comprises a layer of spin-on carbon deposited onto a substrate, a layer of silicon containing hard-mask formed above the layer of spin-on carbon, and a layer of photoresist formed above the layer of silicon containing hard-mask. A pattern formed in the layer of photoresist is sequentially transferred to the silicon containing hard-mask, then to the spin-on carbon, and defines an area of the substrate to be selectively implanted with ions.
摘要:
The present disclosure relates to a method and composition to limit crystalline defects introduced in a semiconductor device during ion implantation. A high-temperature low dosage implant is performed utilizing a tri-layer photoresist which maintains the crystalline structure of the semiconductor device while limiting defect formation within the semiconductor device. The tri-layer photoresist comprises a layer of spin-on carbon deposited onto a substrate, a layer of silicon containing hard-mask formed above the layer of spin-on carbon, and a layer of photoresist formed above the layer of silicon containing hard-mask. A pattern formed in the layer of photoresist is sequentially transferred to the silicon containing hard-mask, then to the spin-on carbon, and defines an area of the substrate to be selectively implanted with ions.
摘要:
The present disclosure provides an image sensor device that exhibits improved quantum efficiency. For example, a backside illuminated (BSI) image sensor device is provided that includes a substrate having a front surface and a back surface; a light sensing region disposed at the front surface of the substrate; and an antireflective layer disposed over the back surface of the substrate. The antireflective layer has an index of refraction greater than or equal to about 2.2 and an extinction coefficient less than or equal to about 0.05 when measured at a wavelength less than 700 nm.
摘要:
The present disclosure provides an image sensor device that exhibits improved quantum efficiency. For example, a backside illuminated (BSI) image sensor device is provided that includes a substrate having a front surface and a back surface; a light sensing region disposed at the front surface of the substrate; and an antireflective layer disposed over the back surface of the substrate. The antireflective layer has an index of refraction greater than or equal to about 2.2 and an extinction coefficient less than or equal to about 0.05 when measured at a wavelength less than 700 nm.