Abstract:
Methods and apparatus for controlling the temperature of a substrate during processing are provided herein. In some embodiments, an apparatus for retaining and controlling substrate temperature may include a puck of dielectric material; an electrode disposed in the puck proximate a surface of the puck upon which a substrate is to be retained; and a plurality of heater elements disposed in the puck and arranged in concentric rings to provide independent temperature control zones.
Abstract:
Embodiments of electrostatic chucks are provided herein. In some embodiments, an electrostatic chuck may include a body having a notched upper peripheral edge, defined by a first surface perpendicular to a body sidewall and a stepped second surface disposed between the first surface and a body upper surface, and a plurality of holes disposed through the body along the first surface; a plurality of fasteners disposed through the plurality of holes to couple the body to a base disposed beneath the body; a dielectric member disposed above the body upper surface to electrostatically retain a substrate; an insulator ring disposed about the body within the notched upper peripheral edge and having a stepped inner sidewall that mates with the stepped second surface to define a non-linear interface therebetween; and an edge ring disposed over the insulator ring, the non-linear interface limiting arcing between the edge ring and the fastener.
Abstract:
Methods and apparatus for controlling the temperature of a substrate during processing are provided herein. In some embodiments, an apparatus for retaining and controlling substrate temperature may include a puck of dielectric material; an electrode disposed in the puck proximate a surface of the puck upon which a substrate is to be retained; and a plurality of heater elements disposed in the puck and arranged in concentric rings to provide independent temperature control zones.
Abstract:
A method is provided for processing a workpiece in a plasma reactor chamber. The method includes coupling, to a plasma in the chamber, power of an RF frequency via a ceiling electrode and coupling, to the plasma, power of at least approximately the same RF frequency via a workpiece support electrode. The method also includes providing an edge ground return path. The method further includes adjusting the proportion between (a) current flow between said electrodes and (b) current flow to the edge ground return path from said electrodes, to control plasma ion density distribution uniformity over the workpiece.
Abstract:
A method of processing a workpiece in a plasma reactor having an electrostatic chuck for holding a workpiece in a chamber of the reactor includes providing a thermally conductive gas under pressure between a backside of the workpiece and a top surface of the electrostatic chuck, controlling the temperature of the electrostatic chuck, defining a desired workpiece temperature, measuring a current workpiece temperature or temperature related to the workpiece temperature and inputting the measured temperature to a thermal model representative of the electrostatic chuck. The method further includes determining from the thermal model a change in the pressure of the thermally conductive gas that would at least reduce the difference between the measured temperature and the desired temperature, and changing the pressure of the thermally conductive gas in accordance with the change determined from the thermal model.
Abstract:
A plasma reactor having a reactor chamber and an electrostatic chuck having a surface for holding a workpiece inside the chamber includes inner and outer zone backside gas pressure sources coupled to the electrostatic chuck for applying a thermally conductive gas under respective pressures to respective inner and outer zones of a workpiece-surface interface formed whenever a workpiece is held on the surface, and inner and outer zone heat exchangers coupled to respective inner and outer zones of said electrostatic chuck. The reactor further includes inner and outer zone temperature sensors in inner and outer zones of the electrostatic chuck and a thermal model capable of simulating heat transfer through the inner and outer zones, respectively, between the evaporator and the surface based upon measurements from the inner and outer temperature sensors, respectively. Inner and outer zone agile control processors coupled to the thermal model govern the inner and outer zone backside gas pressure sources, respectively, in response to predictions from the model of changes in the respective pressures that would bring the temperatures measured by the inner and outer zone sensors, respectively, closer to a desired temperature.
Abstract:
An apparatus configured to confine a plasma within a processing region in a plasma processing chamber. In one embodiment, the apparatus includes a ring that has a baffle having a plurality of slots and a plurality of fingers. Each slot is configured to have a width less than the thickness of a plasma sheath contained in the processing region.
Abstract:
A plasma reactor having a reactor chamber and an electrostatic chuck with a surface for holding a workpiece inside the chamber includes a backside gas pressure source coupled to the electrostatic chuck for applying a thermally conductive gas under a selected pressure into a workpiece-surface interface formed whenever a workpiece is held on the surface and an evaporator inside the electrostatic chuck and a refrigeration loop having an expansion valve for controlling flow of coolant through the evaporator. The reactor further includes a temperature sensor in the electrostatic chuck and a memory storing a schedule of changes in RF power or wafer temperature. The reactor further includes a thermal model capable of simulating heat transfer between the evaporator and the surface based upon measurements from the temperature sensor, and a control processor coupled to the thermal model and to the memory and governing the backside gas pressure source in response to a prediction from the model of a change in the selected pressure that would compensate for the next scheduled change in RF power or implement the next scheduled change in wafer temperature.
Abstract:
In an electrostatic chuck, RF bias power is separately applied to a workpiece and to a process kit collar surrounding the workpiece. At least one variable impedance element governed by a system controller adjusts the apportionment of RF bias power between the workpiece and the process kit collar, allowing dynamic adjustment of the plasma sheath electric field at the extreme edge of the workpiece, for optimum electric field uniformity under varying plasma conditions, for example.
Abstract:
The present invention generally comprises an electrostatic chuck base, an electrostatic chuck assembly, and a puck for the electrostatic chuck assembly. Precisely etching a substrate within a plasma chamber may be a challenge because the plasma within the chamber may cause the temperature across the substrate to be non-uniform. A temperature gradient may exist across the substrate such that the edge of the substrate is at a different temperature compared to the center of the substrate. When the temperature of the substrate is not uniform, features may not be uniformly etched into the various layers of the structure disposed above the substrate. A dual zone electrostatic chuck assembly may compensate for temperature gradients across a substrate surface.