Abstract:
A heavy residual petroleum feed boiling above 650° F.+ (345° C.+) is subjected to membrane separation to produce a produce a permeate which is low in metals and Microcarbon Residue (MCR) as well as a retentate, containing most of the MCR and metals, the retentate is then subjected to hydroconversion at elevated temperature in the presence of hydrogen at a hydrogen pressure not higher than 500 psig (3500 kPag) using a dispersed metal-on-carbon catalyst to produce a hydroconverted effluent which is fractionated to give naphtha, distillate and gas oil fractions. The permeate from the membrane separation may be used as FCC feed either as such or with moderate hydrotreatment to remove residual heteroatoms. The process has the advantage that the hydroconversion may be carried out in low pressure equipment with a low hydrogen consumption as saturation of aromatics is reduced.
Abstract:
The present invention relates to a process for the selective conversion of hydrocarbon feed having a Conradson Carbon Residue content of 0 to 6 wt %, based on the hydrocarbon feed. The hydrocarbon feed is treated in a two-step process. The first is thermal conversion and the second is catalytic cracking of the products of the thermal conversion. The present invention results in a process for increasing the distillate production from a hydrocarbon feedstream for a fluid catalytic cracking unit. The resulting product slate from the present invention can be further varied by changing the conditions in the thermal and catalytic cracking steps as well as by changing the catalyst in the cracking step.
Abstract:
A heavy residual petroleum feed boiling above 650° F.+ (345° C.+) is subjected to hydroconversion at elevated temperature in the presence of hydrogen at a hydrogen pressure not normally higher than 500 psig (3500 kPag) using a dispersed metal-on-carbon catalyst to produce a hydroconverted effluent which is fractionated to form a low boiling fraction and a relatively higher boiling fraction which is subjected to membrane separation to produce a permeate which is low in metals and Microcarbon Residue (MCR) as well as a retentate, containing most of the MCR and metals. The process has the advantage that the hydroconversion may be carried out in low pressure equipment with a low hydrogen consumption as saturation of aromatics is reduced.
Abstract:
A process for heteroatom removal-enhancing hydrogenation of highly refractory aromatic ring structures that involves contacting a highly refractory structure having at least one aryl linkage connecting a first heteroaryl moiety and a moiety selected from the group consisting of an aryl moiety and a second heteroaryl moiety with supercritical water having a temperature of from about 400.degree. C. to about 600.degree. C. in the presence of from about 3.4 MPa to about 18.6 MPa of CO to produce lower molecular weight products having decreased aromatic and heteroatom content. The process has utility for producing more valuable lower molecular weight products having a reduced aromatic heteroatom content from starting materials that are highly refractory and widely considered to be difficult to upgrade such as coals and asphaltenes, and model compounds containing the biaryl linkages.
Abstract:
The present invention pertains to a pervaporation membrane process for the separation of high octane fuel components from a gasoline feed stream comprising feeding a mixed phase vapor-liquid feed to a cyclone separation means to separate the liquid from the vapor, then sending the saturated vapor to the membrane, thereby extending the useful life of the membrane.
Abstract:
A method for treating an emulsion of a hydrocarbon is disclosed. The method includes providing an emulsion of a crude hydrocarbon, and adding an additive to the emulsion to obtain a treated hydrocarbon.
Abstract:
The invention relates to upgraded pyrolysis products, hydroconversion processes for upgrading products obtained from hydrocarbon pyrolysis, equipment useful for such processes. In particular the invention provides methods for reducing coke fouling in such equipment.
Abstract:
The present invention relates to an improved delayed coking process. A coker feed, such as a vacuum resid, is treated with (i) a metal-containing agent and (ii) an oxidizing agent. The feed is treated with the oxidizing agent at an oxidizing temperature. The oxidized feed is then pre-heated to coking temperatures and conducted to a coking vessel for a coking time to allow volatiles to evolve and to produce a substantially free-flowing coke. A metals-containing composition is added to the feed at at least one of the following points in the process: prior to the heating of the feed to coking temperatures, during such heating, and/or after such heating.
Abstract:
This invention relates to a process of producing an upgraded product stream from the products of a resid visbreaking process to produce an improved feedstream for refinery and petrochemical hydrocarbon conversion units. This process utilizes an ultrafiltration process for upgrading select visbreaking process product streams to produce a conversion unit feedstream with improved properties for maximizing the conversion unit's throughput, total conversion, run-time, and overall product value.
Abstract:
A delayed coking process for making substantially free-flowing shot coke. A coker feedstock, such as a vacuum residuum, is treated with an additive, such as a elemental sulfur, high surface area substantially metals-free solids, process fines, a mineral acid anhydride and the like. The treated feedstock is then heated to coking temperatures and passed to a coker drum for a time sufficient to allow volatiles to evolve and to produce a substantially free-flowing shot coke.