Abstract:
An optical element and module for the projection of a light beam, and motor vehicle lamp including a plurality of such modules An optical element for the projection of a light beam comprises a solid body (1) of transparent material in which is formed a cavity (13) able to receive a light source (10), the cavity (13) extending along the principal axis (z) of the transparent body (1) and being delimited by a radially inner surface (3) and a terminal surface (2) of the transparent body (1). The surfaces (2, 3) are able to receive separate respective portions (I, II) of the light flux generated by the source (10). The transparent body (1) further has a radially outer surface (4) which surrounds the radially inner surface (3). The radially outer surface (4) reflects the portion of the light flux (I) coming from the radially inner surface (3) along a direction substantially parallel to the principal axis (z). The transparent body (1) has, on the opposite side, a central surface (6) and an annular surface (5) surrounding the central surface (6), able to receive that portion (II) of the light flux and the reflected portion of the light flux (I) respectively and to transmit these light flux portions (I, II) in directions having predetermined orientations with respect to the principal axis (z). At least one of the surfaces (2, 3, 5, 6) is rotationally asymmetric with respect to the principal axis (z) of the transparent body (1). The surfaces (2, 3, 5, 6) cooperate in such a way as to shape the overall light flux (I, II) emitted by the central and annular surfaces (6, 5) into a light intensity distribution having different divergences in two 25 directions perpendicular to one another and to the principal axis (z).
Abstract:
An optical system for image projection, particularly for projection devices of the “head-mounted” type, includes a display, an optical system for focusing an image formed by the display, and a light guide having an extended body, with two opposite, longitudinal, plane and parallel faces, and opposite ends which define first reflecting surface for coupling into the light guide and second reflecting surface for extracting the image from the light guide. Each light ray which propagates through the light guide undergoes at least three internal total reflections on the parallel plane faces of the light guide. At least a surface of the focusing optical system is a portion of a surface free of rotational symmetry axes. Moreover, the two reflecting surfaces of the light guide are portions of surfaces free of rotational symmetry axes. Finally, the inlet pupil of the light guide coincides with the outlet pupil of the focusing system.
Abstract:
The lighting device comprises a light source and an associated hollow reflector of transparent material having an internal surface and an external surface which are close to and far away from the source respectively. The inner surface of the reflector has in cross section at least one transverse plane passing through the source a discontinuous profile forming a plurality of adjacent steps each of which has a first face through which rays originating from the source can pass and a second face essentially parallel to the rays originating from the source. The outer surface of the reflector has a profile comprising one or more arcs of curves. The reflector is constructed and positioned in such a way that in the said transverse plane most of the rays emitted by the source are reflected through the first face of the steps on its inner surface and strike its outer surface undergoing total internal reflection and after passing back through the reflector emerge from it through the second faces of the steps on its inner surface undergoing a second refraction.
Abstract:
A lighting device, particularly a motor vehicle light, having a primary reflector (2) composed of a hollow body that defines a pair of pointed elements (4, 5), which face opposite directions, between which a luminous source (1) is placed; and a secondary reflector composed of an elongated element (3) with steps (6), at whose centre the primary reflector (2) is placed with its relative pointed elements (4, 5) facing the steps (6).
Abstract:
Described herein is a system and a method for the automatic adjustment of rear-view devices of a vehicle travelling a lane or road, based on shooting scenes representing an environment surrounding the vehicle in the travel direction and on the identification of at least one from among a collection of predetermined shapes and indicia along the road indicating a road intersection between the lane or road traveled by the vehicle and an incident lane or road, whereby the movement of at least one rear-view device is actuated for representing to the driver a rear and side scene with respect to the vehicle comprising the incident lane or road.
Abstract:
The flying machine includes a supporting structure including a central rotational support having a vertical axis connected to an essentially horizontal, preferably annular, peripheral support part, coaxial with the central support, at least one upper rotor including a central hub rotatable about the axis of the central support of the supporting structure, an outer channel-section ring supported by the peripheral part of the supporting structure by contactless suspension means, preferably magnetic suspension means, and a plurality of blades which extend from the hub to the channel-section ring and which are inclined with respect to the horizontal plane; and motor devices carried at least partially by the peripheral part of the supporting structure and operable to cause rotation of the rotor with respect to this structure in a predetermined direction.
Abstract:
VTOL aircraft comprising a first and a second ducted rotor positioned at the ends of a vertical fuselage and whose propellers are driven to rotate in mutually opposite directions. Control flaps for orientation and transverse flight are operatively associated at least to the lower ducted rotor.
Abstract:
A light source composed of a planar, or substantially level, flat or curved, rigid or flexible, matrix of microfilaments integrated on a single substrate and capable of emitting light by incandescence when supplied by an electric current.
Abstract:
A method of fabrication of transparent LED devices, of the type comprising the operations of: i) providing a series of conductive paths on a transparent underlayer; ii) connecting said conductive paths to electronic control means; iii) associating to said underlayer an array of LED sources addressable individually or in groups through said conductive paths, in which i) said LED sources are integrated in the form of chips, i.e., of elements obtained by dividing up a semiconductor wafer and without package, via technologies of the chip-on-board type; ii) said method envisages the use of the flip-chip technique for die bonding, i.e., the electrical connection of the chip to the underlayer.
Abstract:
Described herein is a transparent device for display of information superimposed on a background, said device comprising a plurality of LED sources, addressable individually or in groups through a series of conductive paths deposited on a transparent underlayer and connected to a control electronics, in which: i) said LED sources are integrated in the form of dice, i.e., of elements obtained by dividing up a semiconductor wafer and without package; and ii) at least one of said conductive paths is with interrupted stretches and replaced by stretches of metal wire, bonded to said paths through a wire-bonding operation.