Abstract:
A memory integrated circuit (100) includes a core cell array (102) having a plurality of core cells for storing data in one of a plurality of states, a plurality of power supply buses (140, 142, 144, 146) including a sensing power supply bus (144) and a sensing ground bus (146) dedicated to sensing states of core cells. The integrated circuit firther includes a sense threshold generating circuit (126) which generates a sense threshold signal in response to a power supply potential on the sensing power supply bus and a ground potential of the sensing ground bus. The integrated circuit still further includes a plurality of sense amplifiers (108) which detect the states of core cells in relation to the sense threshold signal. The sense amplifiers are coupled to the sensing power supply bus and the sensing ground bus so that substantially all power supply noise at the plurality of sense amplifiers and the sense threshold generator is common node noise.
Abstract:
A non-volatile memory device includes an array of non-volatile memory cells. When programming the memory cells, a voltage supply source is used that includes multiple independent charge pumps. The independent charge pumps supply the programming voltage to different ones of bit lines in the array of memory cells. Using multiple charge pumps tends to reduce output voltage fluctuations and thereby reduce power loss.
Abstract:
Techniques for programming a non-volatile memory device, such as a Flash memory, include floating source lines of memory cells based on a data pattern that is being programmed to the memory device. The source lines to float are selected such that a distance between drain bit lines and source bit lines of different memory cells in a row is maximized. In this manner, leakage current between these drain bit lines and source bit lines can be decreased.
Abstract:
A system and methodology that can minimize disturbance during an AC operation associated with a memory, such as, program, read and/or erase, is provided. The system pre-charges all or a desired subset of the bit lines in a memory array to a specified voltage, during an AC operation to facilitate reducing AC disturbances between neighboring cells. A pre-charge voltage can be applied to all bit lines in a block in the memory array, or to bit lines associated with a selected memory cell and neighbor memory cells adjacent to the selected memory cell in the block. The system ensures that source and drain voltage levels can be set to desired levels at the same or substantially the same time, while selecting a memory cell. This can facilitate minimizing AC disturbances in the selected memory cell during the AC operation.
Abstract:
A system and methodology that can minimize disturbance during an AC operation associated with a memory, such as, program, read and/or erase, is provided. The system pre-charges all or a desired subset of the bit lines in a memory array to a specified voltage, during an AC operation to facilitate reducing AC disturbances between neighboring cells. A pre-charge voltage can be applied to all bit lines in a block in the memory array, or to bit lines associated with a selected memory cell and neighbor memory cells adjacent to the selected memory cell in the block. The system ensures that source and drain voltage levels can be set to desired levels at the same or substantially the same time, while selecting a memory cell. This can facilitate minimizing AC disturbances in the selected memory cell during the AC operation.
Abstract:
A simultaneous operation flash memory capable of write protecting predetermined sectors in the simultaneous operation flash memory. The preferred simultaneous operation flash memory includes a plurality of sectors divided into an upper bank and a sliding lower bank. Each bank is associated with a predetermined amount of sectors in the simultaneous operation flash memory. The simultaneous operation flash memory also includes at least one upper address decoder circuit that has a upper sector select line. During operation, each upper address decoder circuit generates a predetermined output signal on the upper sector select line when selected. In addition, the simultaneous operation flash memory includes at least one lower address decoder circuit including a lower address sector select line, wherein each upper address decoder circuit generates a predetermined output signal on the lower sector select line when selected during operation. Finally, at least one write protect CAM is electrically connected with a respective upper sector select line or a respective lower sector select line, wherein said write protect CAM generates a sector protect signal if the write protect CAM is selected by the respective upper sector select line or the respective lower sector select line.
Abstract:
A memory device includes a sense amplifier to sense the state of a bitcell. The sense amplifier includes two input terminals connected via a switch. One of the input terminals is connected to a node, whereby a current through the node represents a difference in current drawn by a bitcell and a reference current. During a first phase, the switch between the input terminals of the sense amplifier is closed, so that a common voltage is applied to both input terminals. During a second phase, the switch is opened, and the sense amplifier senses a state of information stored at the bitcell based on the current through the node. By using the switch to connect and disconnect the inputs of the sense amplifier in the two phases, the accuracy and speed with which the state of the information stored at the bitcell can be determined is improved.
Abstract:
A method and apparatus are provided for high performance, high voltage memory operations on selected memory cells (200) of a semiconductor memory device (100). A high voltage generator (106) during program or erase operations provides a continuous high voltage level (702) on selected word lines (502) and maintains a continuous high voltage level supply to a bit line decoder (120) which sequentially provides the high voltage level (706) to a first portion of bit lines (504) and discharges (708) those bit lines (504) before providing the high voltage level to a second portion (710).For additional improvements to program operations, the high voltage generator (106) decouples high voltages provided to the word lines (502) and the bit lines (504) by providing a current flow control device (1208) therebetween and provides a boosting voltage at a time (1104) to overcome a voltage level drop (1102) resulting from a capacitor load associated with selected bit lines (504) and/or the bit line decoder (120) precharges (1716) a second portion of the bit lines (504) while providing a high voltage level to a first portion to program (1706) a first portion of memory cells (200).For improvements to read operations, whether dynamic reference cells (2002) are blank is determined by providing non-identically regulated high voltage levels from a first voltage source (2112) to the dynamic reference cells (2002) and from a second voltage source (2104) to static reference cells (2004) and, if the dynamic reference cells (2002) are not blank, reads selected memory cells (200) by providing identically regulated high voltage levels to the selected memory cells (200), the dynamic reference cells (2002) and the static reference cells (2004).
Abstract:
A method and apparatus are provided for high performance, high voltage memory operations on selected memory cells (200) of a semiconductor memory device (100). A high voltage generator (106) during program or erase operations provides a continuous high voltage level (702) on selected word lines (502) and maintains a continuous high voltage level supply to a bit line decoder (120) which sequentially provides the high voltage level (706) to a first portion of bit lines (504) and discharges (708) those bit lines (504) before providing the high voltage level to a second portion (710).For additional improvements to program operations, the high voltage generator (106) decouples high voltages provided to the word lines (502) and the bit lines (504) by providing a current flow control device (1208) therebetween and provides a boosting voltage at a time (1104) to overcome a voltage level drop (1102) resulting from a capacitor load associated with selected bit lines (504) and/or the bit line decoder (120) precharges (1716) a second portion of the bit lines (504) while providing a high voltage level to a first portion to program (1706) a first portion of memory cells (200).For improvements to read operations, whether dynamic reference cells (2002) are blank is determined by providing non-identically regulated high voltage levels from a first voltage source (2112) to the dynamic reference cells (2002) and from a second voltage source (2104) to static reference cells (2004) and, if the dynamic reference cells (2002) are not blank, reads selected memory cells (200) by providing identically regulated high voltage levels to the selected memory cells (200), the dynamic reference cells (2002) and the static reference cells (2004).
Abstract:
Non-volatile memory, such as Flash memory, is programmed by writing a window of information to memory. The programmed/non-programmed state of each memory cell may be dynamically determined for each window and stored as an indication bit. These techniques can provide for improved average power drain and a reduced maximum current per window during programming.