Abstract:
An iridium complex is disclosed, which has a structure represented by the following formula (I): wherein each of Z1 and Z3 represents an atomic group for forming a nitrogen-containing heteroaryl group or a nitrogen-containing heterocycloalkenyl group; Z2 represents an atomic group for forming an aryl group, a heteroaryl group, a cycloalkenyl group or a heterocycloalkenyl group; Y represents an atomic group for forming a 5-membered nitrogen-containing heterocycloalkenyl group; each of R1, R2, R3 and R4 represents a hydrogen atom or a substituent; m is 1 or 2; a, b and d is 0 or any positive integer; and c is an integer of from 0 to 2.
Abstract:
The present invention relates to a semiconductor device and a semiconductor package having the same. The semiconductor device includes a conductive element. The conductive element is disposed on a protruded conductive via and liner, and covers a sidewall of the liner. Whereby, the conductive element can protect the protruded conductive via and liner from being damaged. Further, the size of the conductive element is large, thus it is easy to perform a probe test process.
Abstract:
An RFID tag monitoring system with multiple reader units each equipped with processing capacity sufficient to enable the unit to operate autonomously under its own command and control as well as to register in its individual memory the identity of all of the items that potentially could be present at any particular time at a zone or zones to which it is assigned as well as the particular zone at which a specific RFID tagged item is found; data compression at the reader units permits timely reporting of inventory to a main computer.
Abstract:
This invention provides a transition metal carbene complexes and the electroluminescent application thereof. Through employing different N̂N heteroleptic ligand, the transition metal carbene complex can display wide-range color tuning ability from deep blue to red. The mentioned transition metal carbene complex can be applied in luminescent device, and the luminescent device can display wide-range color tuning ability with high luminescent efficiency while employing different N̂N heteroleptic ligand in the transition metal carbene complex.
Abstract:
A modeling composition which is a non-toxic, malleable modeling compound for molding, extruding or sculpting use. Composition generally comprises wax, water, starch, filler, emulsifier, lubricant and coloring. When dried this modeling composition also creates a crayon.
Abstract:
A technique for flexibly performing processes depending on the type of a path for providing an additional service when there are a plurality of paths for providing additional services for the same session between terminals communicating with each other over a network is disclosed. According to the technique, when a mobile terminal (MN 100) establishes a QoS path using NSIS to a corresponding node (CN 124) on different types of data communication paths, a signaling message including information (MIE) representing the path type is created and transmitted. Each node (QNE) with an NSIS QoS function, which has received the message, identifies a plurality of QoS paths by comparing the MIE, a session identifier and a flow identifier, and performs processing of the QoS paths according to control information (CI) from MNs or/and the policy which the QNE has.
Abstract:
Disclosed is a triphenylene based aromatic compound, wherein a benzene center is substituted with a triphenylene group and another aromatic group such as triphenylenyl, pyrenyl, phenylvinyl, carbazolylphenyl, or arylanthryl in the meta position of the benzene center. The meta-substituted aromatic compound of the invention has better thermal stability (Tg) than the conventional para-substituted aromatic compound. The meta-substituted aromatic compound, served as a hole transporting layer or a host material applied in a light emitting layer in an OLED, is more preferable than the conventional para-substituted aromatic compound.
Abstract:
The present invention introduces a method for the network to optimize the route for user's local IP access, without affecting the access to operator's core network. With this mechanism, no excessive signalling is needed for the optimization. The present invention is also applicable to the corporate network that has multiple home NodeBs or home eNodeBs. Finer grain control on the services to be provided over different home NodeB or home eNodeB is also possible. Further, path optimization and continuation of the service upon handover can be controlled, and hence flexibility of the service can be secured.
Abstract:
An exemplary heat dissipation device includes a heat sink, a fan holder, and a fan secured on a front side of the fan holder. The heat sink includes a base having two first fixing ears at its two lateral sides, and fins on the base. An engaging notch is defined in a top end of four of the fins. The fan holder includes a top panel, and two sidewalls extending downwardly from two lateral edges of the top panel. The top panel has a pair of inserting protrusions at a bottom surface thereof. The two sidewalls have two fixing flanges at lower ends thereof. The top panel is partially placed on the front portion of the top ends of the fins, and the inserting protrusions are inserted into the engaging notches of the fins. The two sidewalls abut against two lateral sides of the heat sink, and the two fixing flanges are disposed on the two first fixing ears.
Abstract:
A method for negotiations between various entities of a wireless local area network (WLAN) including negotiations between controlling nodes (CNs) and wireless access points (WAPs) and negotiations between WAPs is disclosed. These negotiations are used for the purpose of establishing the capabilities of the various entities, determining how such capabilities may be optimally divided among the negotiating entities and then dividing the capabilities among the entities based on this determination. The capabilities include those required for the operation, control and management of the WLAN entities and the encompassing WLAN. The disclosed method introduces means for flexibly accommodating the varying degrees of differences in capabilities among the WLAN entities between the WLAN entities including dynamic changes in WLAN topologies.