Abstract:
Interconnect structures including a selective via post disposed on a top surface of a lower level interconnect feature, and fabrication techniques to selectively form such a post. Following embodiments herein, a minimum interconnect line spacing may be maintained independent of registration error in a via opening. In embodiments, a selective via post has a bottom lateral dimension smaller than that of a via opening within which the post is disposed. Formation of a conductive via post may be preferential to a top surface of the lower interconnect feature exposed by the via opening. A subsequently deposited dielectric material backfills portions of a via opening extending beyond the interconnect feature where no conductive via post was formed. An upper level interconnect feature is landed on the selective via post to electrically interconnect with the lower level feature.
Abstract:
Conformal hermetic dielectric films suitable as dielectric diffusion barriers over 3D topography. In embodiments, the dielectric diffusion barrier includes a dielectric layer, such as a metal oxide, which can be deposited by atomic layer deposition (ALD) techniques with a conformality and density greater than can be achieved in a conventional silicon dioxide-based film deposited by a PECVD process for a thinner contiguous hermetic diffusion barrier. In further embodiments, the diffusion barrier is a multi-layered film including a high-k dielectric layer and a low-k or intermediate-k dielectric layer (e.g., a bi-layer) to reduce the dielectric constant of the diffusion barrier. In other embodiments a silicate of a high-k dielectric layer (e.g., a metal silicate) is formed to lower the k-value of the diffusion barrier by adjusting the silicon content of the silicate while maintaining high film conformality and density.
Abstract:
Methods and associated structures of forming a microelectronic structure are described. Those methods may comprise forming a conductive material in an interconnect opening within an interlayer dielectric material that is disposed on a substrate, forming a low density dielectric material on a surface of the dielectric layer and on a surface of the conductive material, and forming a high density dielectric barrier layer on the low density dielectric layer.
Abstract:
Integrated circuit (IC) devices implementing pairs of thin-film transistors (TFTs) with shared contacts, and associated systems and methods, are disclosed. An example IC device may include a support structure, a channel layer provided over the support structure, where the channel layer includes a thin-film semiconductor material, a first TFT with a channel region that includes a first portion of the channel layer, and a second TFT with a channel region that includes a second portion of the channel layer. In some embodiments, a source or a drain (S/D) contact of the first TFT may be a shared contact that is also a S/D contact of the second TFT. In other embodiments, a gate contact/stack of the first TFT may be a shared contact/stack that is also a gate contact/stack of the second TFT.
Abstract:
An integrated circuit structure comprises a lower device layer that includes a first structure comprising a plurality of PMOS transistors. An upper device layer is formed on the lower device layer, wherein the upper device layer includes a second structure comprising a plurality of NMOS transistors having a group III-V material source/drain region.
Abstract:
Embodiments of the present disclosure are directed towards interlayer interconnects and associated techniques and configurations. In one embodiment, an apparatus includes a semiconductor substrate, one or more device layers disposed on the semiconductor substrate, and one or more interconnect layers disposed on the one or more device layers, the one or more interconnect layers including interconnect structures configured to route electrical signals to or from the one or more device layers, the interconnect structures comprising copper (Cu) and germanium (Ge). Other embodiments may be described and/or claimed.
Abstract:
Processes of forming an insulated wire into an interlayer dielectric layer (ILD) of a back-end metallization includes thermally treating a metallic barrier precursor under conditions to cause at least one alloying element in the barrier precursor to form a dielectric barrier between the wire and the ILD. The dielectric barrier is therefore a self-forming, self-aligned barrier. Thermal processing is done under conditions to cause the at least one alloying element to migrate from a zone of higher concentration thereof to a zone of lower concentration thereof to further form the dielectric barrier. Various apparatus are made by the process.