Abstract:
A computer-implemented method for processing electropherograms provided through a communications network from one or more forensic field test devices to a central communications hub, wherein the forensic field test devices are configured to perform a biological assay analysis, the method implemented using one or more processors programmed with instruction to implement the method comprising receiving, at the central communications hub, one or more electropherograms transmitted through the communication network from the forensic field test devices; scoring each electropherogram based on one or more criteria; placing the one or more electropherograms in a queue for review; matching at least a subset of the electropherograms with each of one or more service providers; based on the matching, transmitting at least the subset to the one or more of the service providers for review; receiving reviewed electropherograms from the one or more service providers; and performing forensic analysis using the reviewed electropherograms.
Abstract:
Disclosed are methods for performing capillary electrophoresis on two or more nucleic acid samples. The methods employ a forward voltage to move a first sample forward from an inlet to an interrogation region in the capillary, then a backward voltage to move the first sample backward, and then a forward voltage again to move the first sample and a second sample forward. Systems and apparatuses for performing capillary electrophoresis are also provided.
Abstract:
A command center includes at least one network communications interface configured for two-way communications with a plurality of sites remote from the command center and at least one display screen and user interface. Each of the plurality of sites includes at least one forensic field test device configured to identify individuals using DNA samples from the individuals. The display screen and user interface are configured to depict aspects of forensic field test devices of the plurality of sites, wherein the aspects include a site identifier for each of the forensic field test devices and one or more additional aspects.
Abstract:
This disclosure provides, among other things, a cartridge comprising: (a) a cartridge body comprising a malleable material and having, disposed on a surface of the body, at least one valve body comprising a valve inlet and a valve outlet, each fluidically connected to a fluidic channel; and (b) a layer comprising a deformable material bonded to a surface of the cartridge body and sealing the at least one valve body at points of attachment, thereby forming at least one valve; wherein the at least one valve body is depressed in the cartridge body relative to the points of attachment and wherein the deformable material covering the at least one valve body retains sufficient elasticity after deformation such that in a ground state the valve is open. Also disclosed is an instrument comprising a cartridge interface and a cartridge as described herein engaged with the cartridge interface, wherein (II) the cartridge interface comprises: (A) at least one mechanical actuator, each mechanical actuator positioned to actuate a valve; and (B) at least one motor operatively coupled to actuate a mechanical actuator toward or away from a valve.
Abstract:
Provided herein is a fluidic cartridge having a body comprising a malleable material and a layer comprising a deformable material bonded to a surface of the body that seals one or more fluidic channels that communicate with one or more valve bodies formed in a surface of the body. The valve can be closed by applying pressure to the deformable material sufficient to crush and close off a fluidic channel in the body. Also provided are a cartridge interface configured to engage the cartridge. Also provided is a system including a cartridge interface and methods of using the cartridge and system.
Abstract:
Provided herein is a fluidic cartridge having a body comprising a malleable material and a layer comprising a deformable material bonded to a surface of the body that seals one or more fluidic channels that communicate with one or more valve bodies formed in a surface of the body. The valve can be closed by applying pressure to the deformable material sufficient to crush and close off a fluidic channel in the body. Also provided are a cartridge interface configured to engage the cartridge. Also provided is a system including a cartridge interface and methods of using the cartridge and system.
Abstract:
A live help system provides an intuitive display of help information on a user's graphical user interface. A request is received from a client device for help, and a live help provider interface is initiated at a live help location. Data is acquired regarding a user's location, including data on external devices in the user's location. Indicators are provided to allow the live help provider to point to or otherwise indicate items on the user interface or outside of the user interface. Live help input is captured at the live help provider interface. Instructions are then transmitted to the display of the client device to display live help input, as though the agent were present and interacting with or indicating items on the screen or off the screen.
Abstract:
Methods and devices for the interfacing of microchips to various types of modules are disclosed. The technology disclosed can be used as sample preparation and analysis systems for various applications, such as DNA sequencing and genotyping, proteomics, pathogen detection, diagnostics and biodefense. Also disclosed in the present disclosure is a flow through, traveling-wave, bead-beating device which comprises a rotating pole piece, a flow through tube, and a magnetic piece. Rotation of the rotating pole piece may create a magnetic wave down the flow through tube, thereby producing sufficient acceleration of beads through the tube to disrupt or lyse target analytes flowing through the tube.
Abstract:
The invention provides a system that can process a raw biological sample, perform a biochemical reaction and provide an analysis readout. For example, the system can extract DNA from a swab, amplify STR loci from the DNA, and analyze the amplified loci and STR markers in the sample. The system integrates these functions by using microfluidic components to connect what can be macrofluidic functions. In one embodiment the system includes a sample purification module, a reaction module, a post-reaction clean-up module, a capillary electrophoresis module and a computer. In certain embodiments, the system includes a disposable cartridge for performing analyte capture. The cartridge can comprise a fluidic manifold having macrofluidic chambers mated with microfluidic chips that route the liquids between chambers. The system fits within an enclosure of no more than 10 ft3. and can be a closed, portable, and/or a battery operated system. The system can be used to go from raw sample to analysis in less than 4 hours.
Abstract:
The disclosure provides methods and devices for separating and detecting nucleic acid fragments labeled with a plurality of spectrally resolvable dyes using a single light source or multiple light sources. Use of a greater number of light sources increases the number of spectrally resolvable dyes that can be interrogated. Labeling fragments with a greater number of spectrally resolvable dyes permits more overlapping of fragments with differentiation of the fragments, and thus separation can be conducted on a smaller range of fragment sizes/lengths. To improve the detection sensitivity of a detection system employing multiple light sources, light emitted by the light sources can be spatially separated from one another and/or the intensity of each of the light sources can be modulated. Each of the one or more light sources can be, e.g., a laser or a light-emitting diode. The methods and devices of the disclosure are useful for performing genetic analysis, e.g., analysis of a plurality of STR markers utilized in a forensic database (e.g., CODIS) to identify humans.