Abstract:
A method for manufacturing a display device using light emitting diode chips contemplates manufacturing a plurality of light emitting diode (LED) chips using a porous template; forming a plurality of first electrodes on a substrate; attaching the LED chips to pixel sites on the first electrodes using fluidic self assembly (FSA); and forming a plurality of second electrodes on a top surface of the LED chips.
Abstract:
A nanowire composite and a method of preparing the nanowire composite comprise a template having a plurality of hollow channels, nanowires formed within the respective channels of the template, and a functional element formed by removing a portion of the template so that one or more of the nanowires formed within the portion of the template are exposed. Since the nanowire composite can be prepared in a simple manner at low costs and can be miniaturized, the nanowire composite finds application in resonators and a variety of sensors.
Abstract:
A novel field emission display (FED) and a novel method for making the same. The FED includes a substrate, a cathode electrode and a focus electrode formed on the same level with each other on the substrate, an insulation layer formed on the cathode electrode and the focus electrode such that the cathode electrode and the focus electrode are partially exposed through the insulation layer, a field emitter formed at the cathode electrode exposed by the insulation layer, and a gate electrode formed on the insulation layer. The field emitter being formed on the same layer and of the same material and at the same time as the cathode electrode.
Abstract:
Methods of growing carbon nanotubes and manufacturing a field emission device using the carbon nanotubes are provided. The method of growing carbon nanotubes includes the steps of preparing a substrate, forming a catalyst metal layer on the substrate to promote the growing of the carbon nanotubes, forming an amorphous carbon layer on the catalyst metal layer where the amorphous carbon layer partially covers the catalyst metal layer, and growing the carbon nanotubes from a surface of the catalyst metal layer. The carbon nanotubes are grown in a portion of the surface of the catalyst metal layer that is not covered by the amorphous carbon layer. In the method of growing carbon nanotubes, the carbon nanotubes are grow at a low temperature. A density of carbon nanotubes can be controlled to improve field emission characteristics of an emitter of a field emission device.
Abstract:
A carbon nanotube emitter and its fabrication method, a Field Emission Device (FED) using the carbon nanotube emitter and its fabrication method include a carbon nanotube emitter having a plurality of first carbon nanotubes arranged on a substrate and in parallel with the substrate, and a plurality of the second carbon nanotubes arranged on a surface of the first carbon nanotubes.
Abstract:
A method of patterning a catalyst layer for synthesis of carbon nanotubes (CNTs) and a method of fabricating a field emission device (FED) using the method, whereby a catalyst layer formed of metal salt having a weak-acid negative ion group is formed on a substrate, a photoresist is formed on the catalyst layer, the photoresist is exposed to a light using a photomask with a predetermined pattern, predetermined regions of the photoresist and the catalyst layer are removed by using a strong base developing solution, and the photoresist which remains on the catalyst layer is removed.
Abstract:
A Field Emission Display (FED) and a method of manufacturing the FED are provided. The FED includes a substrate; a plurality of under-gate electrodes formed parallel to one another on a top surface of a substrate; a plurality of cathode electrodes formed perpendicular to the under-gate electrodes on an upper portion of the under-gate electrode, each of cathode holes being formed in portions of the cathode electrodes that intersect with the under-gate electrodes; a plurality of emitters formed symmetrical with respect to centers of the cathode holes on the cathode electrodes; and a plurality of gate electrodes formed to be electrically connected to the under-gate electrodes in central portions of the cathode holes.
Abstract:
A method of forming a floating structure lifting up from a substrate and a method of manufacturing a field emission device (FED) employing the floating structure are provided. The method of forming a floating structure includes forming an expansion causer layer, which can generate a byproduct from the reacting with a predetermined reactant gas causing volume expansion, on the substrate; forming an object material layer for the floating structure on a resultant stack; forming a hole through which the reactant gas is supplied on a resultant stack; supplying the reactant gas through the hole so that the object material layer partially lifts up from the substrate due to the byproduct generated from the reaction of the expansion causer layer with the reactant gas; and removing the byproduct through the hole so that the portion of the object material layer lifting up from the substrate can be completely separated from the substrate to form the floating structure.
Abstract:
A case including a case main body, a matrix including a semiconductor nanocrystal, the matrix disposed in the case main body, and a sealant disposed on the case main body, wherein the sealant has a gas permeability of about 1 cubic centimeter at standard temperature and pressure per centimeter per meter squared per day per atmosphere or less and a tensile strength of about 5 megaPascals or more, and wherein the semiconductor nanocrystal is a Group II-VI compound, a Group III-V compound, a Group IV-VI compound, a Group IV element, a Group IV element, a Group IV compound, or a combination thereof.
Abstract:
A composite anode active material including metal core particles and carbon nanotubes that are covalently bound to the metal core particles, an anode including the composite anode active material, a lithium battery employing the anode, and a method of preparing the composite anode active material.