Abstract:
A plasma reactor that generates plasma in a workplace processing chamber by an electron beam, has an electron beam source chamber with a wall opposite to the electron beam propagation direction, the wall being profiled to compensate for a non-uniformity in electron beam density distribution.
Abstract:
A plasma reactor that generates plasma in workpiece processing chamber by a electron beam, has an electron beam source chamber and an array of plasma sources facing the electron beam source chamber for affecting plasma electron density in different portions of the processing chamber. In another embodiment, an array of separately controlled electron beam source chambers is provided.
Abstract:
A method of processing a workpiece in a plasma reactor chamber includes coupling RF power via an electrode to plasma in the chamber, the RF power being of a variable frequency in a frequency range that includes a fundamental frequency f. The method also includes coupling the electrode to a resonator having a resonant VHF frequency F which is a harmonic of the fundamental frequency f, so as to produce VHF power at the harmonic. The method controls the ratio of power near the fundamental f to power at harmonic F, by controlling the proportion of power from the generator that is up-converted from f to F, so as to control plasma ion density distribution.
Abstract:
A method and apparatus for removing excess dopant from a doped substrate is provided. In one embodiment, a substrate is doped by surfaced deposition of dopant followed by formation of a capping layer and thermal diffusion drive-in. A reactive etchant mixture is provided to the process chamber, with optional plasma, to etch away the capping layer and form volatile compounds by reacting with excess dopant. In another embodiment, a substrate is doped by energetic implantation of dopant. A reactive gas mixture is provided to the process chamber, with optional plasma, to remove excess dopant adsorbed on the surface and high-concentration dopant near the surface by reacting with the dopant to form volatile compounds. The reactive gas mixture may be provided during thermal treatment, or it may be provided before or after at temperatures different from the thermal treatment temperature. The volatile compounds are removed. Substrates so treated do not form toxic compounds when stored or transported outside process equipment.
Abstract:
A process is provided for removing polymer from a backside of a workpiece and/or photoresist from a front side of the workpiece. For backside polymer removal, the wafer is positioned near the ceiling to above a localized or remote plasma source having a side outlet through the sidewall of the chamber, and backside polymer is removed by rotating the workpiece while flowing plasma by-products from the side outlet to the wafer backside. For front side photoresist removal, the wafer is positioned away from the ceiling and below the side outlet of the localized plasma source, and front side photoresist is remove by rotating the workpiece while flowing plasma by-products from the side outlet to the wafer front side.
Abstract:
A workpiece is processed in a plasma reactor chamber using stabilization RF power delivered into the chamber, by determining changes in load impedance from RF parameters sensed at an RF source or bias power generator and resolving the changes in load impedance into first and second components thereof, and changing the power level of the stabilization RF power as a function one of the components of changes in load impedance.
Abstract:
Correction of skew in plasma etch rate distribution is performed by tilting the overhead RF source power applicator about a tilt axis whose angle is determined from skew in processing data. Complete freedom of movement is provided by incorporating exactly three axial motion servos supporting a floating plate from which the overhead RF source power applicator is suspended.
Abstract:
Embodiments of impedance matching networks are provided herein. In some embodiments, an impedance matching network may include a coaxial resonator having an inner and an outer conductor. A tuning capacitor may be provided for variably controlling a resonance frequency of the coaxial resonator. The tuning capacitor may be formed by a first tuning electrode and a second tuning electrode and an intervening dielectric, wherein the first tuning electrode is formed by a portion of the inner conductor. A load capacitor may be provided for variably coupling energy from the inner conductor to a load. The load capacitor may be formed by the inner conductor, an adjustable load electrode, and an intervening dielectric.
Abstract:
A plasma reactor, having source and bias RF power generators of different frequencies, is provided with a controller responsive to fluctuations in plasma load impedance measured at one of the generators to modulate the output of the other generator to compensate for the fluctuations.
Abstract:
A workpiece is processed in a plasma reactor chamber using stabilization RF power delivered into the chamber, by determining changes in load impedance from RF parameters sensed at an RF source or bias power generator and resolving the changes in load impedance into first and second components thereof, and changing the power level of the stabilization RF power as a function one of the components of changes in load impedance.