Abstract:
A method for forming a pattern using a printing process is disclosed in the present invention. The method includes forming a resist layer on a substrate having an etching layer thereon, locating a master having a convex pattern over the substrate, pressing the master against the substrate until the convex pattern of the master directly contacts the etching layer, and removing a portion of the resist layer to expose a surface over the substrate, the removed portion of the resist layer having a width substantially the same as the convex portion of the master.
Abstract:
An array substrate for a liquid crystal display device includes a transparent substrate, a gate line arranged along a first direction on the transparent substrate, a gate electrode extending from the gate line, a common line arranged along the first direction adjacent to the gate line and having a protrusion, a gate insulation layer on the transparent substrate to cover the gate line, the gate electrode, and the common electrode, an active layer on the gate insulation layer and over the gate electrode, first and second ohmic contact layers on the active layer, a data line arranged along a second direction perpendicular to the first upon the gate insulation layer, a source electrode extending from the data line and contacting the first ohmic contact layer, a drain electrode spaced apart from the source electrode and contacting the second ohmic contact layer, a first capacitor electrode formed on the gate insulation layer and connected to the drain electrode, the first capacitor electrode overlapping the common line and the protrusion of the common line, a passivation layer formed on the gate insulation layer to cover the data line, the source and drain electrodes, and the first capacitor electrode, the passivation layer having a first contact hole exposing a portion of the capacitor electrode, and a pixel electrode formed on the passivation layer and contacting the first capacitor electrode through the first contact hole.
Abstract:
A liquid crystal display device includes a transparent insulating substrate, a gate line and a gate electrode on the transparent insulating substrate, a gate insulating film, an active layer, an ohmic contact layer, source and drain electrodes, and a data line on the transparent insulating substrate, a passivation film formed on the transparent insulating substrate including the source and drain electrodes and the data line, a compensation film formed on the passivation film, and a pixel electrode formed on at least the compensation film.
Abstract:
A TFT array substrate has a PAI pattern, and the PAI pattern has an over-etched portion of the pure amorphous silicon layer. This over-etched portion prevents a short between the pixel electrode and the pure amorphous silicon layer (i.e., the active layer). The over-etched portion also enables the aperture ratio to increase a gate line over a said substrate; a data line over the said substrate being perpendicular to the gate line; a passivation layer covering the data line, the passivation layer divided into a residual passivation layer and a etched passivation layer; a doped amorphous silicon layer formed under the data line and corresponding in size to the data line; a pure amorphous silicon layer formed under the doped amorphous silicon layer and having a over-etched portion in the peripheral portions, wherein the over-etched portion is over-etched from the edges of the residual passivation layer toward the inner side; an insulator layer under the pure amorphous silicon layer; a TFT formed near the crossing of the gate line and the data line; and a pixel electrode overlapping the data line and contacting the TFT.
Abstract:
An array substrate for a transflective liquid crystal display device includes a substrate having a display portion and a surrounding portion, a gate line on the substrate, a gate insulating layer covering the gate line, a data line on the gate insulating layer, a gate pad and a data pad within the surrounding portion, the gate pad connected to the gate line and the data pad connected to the data line, a switching device connected to the gate and data lines, a reflective electrode within the display portion and connected to the switching device, a reflective plate within the surrounding portion, a passivation layer on the reflective electrode and the reflective plate, and a transmissive electrode on the passivation layer and connected to the reflective electrode.
Abstract:
An organic electroluminescent display device includes first and second substrates bonded together, the first and second substrates having a plurality of pixel regions, a plurality of driving elements on an inner surface of the first substrate within each of the plurality of pixel regions, a plurality of connection electrodes contacting the driving elements, a black matrix on an inner surface of the second substrate at a boundary of each of the plurality of pixel regions, a color filter layer including red, green, and blue color filters on the inner surface of the second substrate, each of the red, green, and blue color filters corresponding to each of the plurality of pixel regions, a first electrode on the black matrix and the color filter layer, an organic electroluminescent layer on the first electrode, and at least one second electrode on the organic electroluminescent layer, wherein the at least one second electrode contacts the connection electrodes.
Abstract:
An organic electro luminescent (EL) display device including a substrate composed of an array unit and a ground unit; an organic luminescent unit in the array unit and having an organic emitting layer, a first electrode, and a second electrode; a ground line in the ground unit and contacted to the second electrode of the organic luminescent unit; and an insulating layer exposing a part of the ground line such that the second electrode is directly connected to the second electrode.
Abstract:
A method for forming a display device, includes forming a thin film transistor (TFT), a gate pad and a data pad on a substrate; depositing sequentially an inorganic insulating material and an organic insulating material on the substrate having the TFT, the gate pad and the data pad; selectively removing the organic insulating material using a diffracting mask to form a patterned organic insulating layer; selectively removing the inorganic insulating material, using at least a portion of the patterned organic insulating layer as a mask to define contact holes for the TFT, the gate pad and the data pad; and forming electrodes in the contact holes.
Abstract:
A transflective LCD device improves a light transmittance in both the transmissive mode and the reflective mode and improves efficiency in the use of the light regardless of wavelength. To properly control the ON/OFF-switch of the blue wavelength band or the red wavelength band, the transflective LCD device adopts a half wave plate (null/2) and changes the optic axes of the polarizers and the retardation film.
Abstract:
A liquid crystal display, and a method of manufacturing thereof, includes providing a substrate; depositing sequentially a first metal layer and a first insulating layer on the substrate; patterning the first metal layer and the first insulating layer using a first mask to form a gate line and a first gate insulating layer; depositing sequentially a second gate insulating layer, a pure semiconductor layer, a doped semiconductor layer and a second metal layer over the whole substrate; patterning the second metal layer using a second mask to form a data line, source and drain electrodes, a capacitor electrode, the capacitor electrode overlapping a portion of the gae line; etching the doped semiconductor layer between the source and drain electrodes to form a channel region; depositing a third insulating layer over the whole substrate; patterning the third insulating layer using a third mask to form a passivation film, the passivation film having a smaller width than the data line and covering the source and drain electrodes and exposing a portion of the drain electrode and the capacitor electrode; depositing a transparent conductive material layer over the whole substrate; and patterning the transparent conductive material layer using a fourth mask to pixel electrode, the pixel electrode contacting the drain electrode.