Abstract:
A method and apparatus for including in a computer system, instructions for performing cache memory invalidate and cache memory flush operations. In one embodiment, the computer system comprises a cache memory having a plurality of cache lines each of which stores data, and a storage area to store a data operand. An execution unit is coupled to the storage area, and operates on data elements in the data operand to invalidate data in a predetermined portion of the plurality of cache lines in response to receiving a single instruction.
Abstract:
An interconnect bandwidth throttler is disclosed. The interconnect bandwidth throttler turns off the interconnect, based on whether a maximum number of transactions has taken place within a predetermined throttle window. Both the maximum number of transactions and the throttle window are adjustable. Characteristics such as performance, thermal considerations, and average power are adjustable using the interconnect bandwidth throttler.
Abstract:
A technique to promote determinism among multiple clocking domains within a computer system or integrated circuit, In one embodiment, one or more execution units are placed in a deterministic state with respect to multiple clocks within a processor system having a number of different clocking domains.
Abstract:
A method is described that, in order to change an operational state of a resource within a computing system that is shared by components of the computing system so that the computing system's power consumption is altered, sends a packet over one or more nodal hops within a packet based network within the computing system. The packet contains information pertaining to the power consumption alteration.
Abstract:
Systems and methods of processing write transactions provide for combining write transactions on an input/output (I/O) hub according to a protocol between the I/O hub and a processor. Data associated with the write transactions can be flushed to an I/O device without the need for proprietary software and specialized registers within the I/O device.
Abstract:
The present invention discloses a method and apparatus for encoding an instruction in an instruction set which uses a prefix code to qualify an existing opcode of an existing instruction. An opcode and an escape code are selected. The escape code is selected such that it is different from the prefix code and the existing opcode. The opcode, the escape code, and the prefix code are combined to generate an instruction code which uniquely represents the operation performed by the instruction.
Abstract:
An interconnect bandwidth throttler is disclosed. The interconnect bandwidth throttler turns off the interconnect, based on whether a maximum number of transactions has taken place within a predetermined throttle window. Both the maximum number of transactions and the throttle window are adjustable. Characteristics such as performance, thermal considerations, and average power are adjustable using the interconnect bandwidth throttler.
Abstract:
A method to reduce idle leakage power in I/O pins of an integrated circuit using external circuitry. Initially, I/O pins on a package are subdivided into those that will also remain powered up and those that will power down during idle state. When a system enters a low power mode, a signal is sent to the external circuitry. The signal notifies the I/O pins that always remain powered up to notify the external circuitry to power down the other set of I/O pins.
Abstract:
A front side bus swizzle mechanism modifies the front side (address and data) bus on a chip so that, when the chip is positioned on one side of a printed circuit board, connection to a second chip located on the opposite side of the printed circuit board is simplified. The simplified connection may result in less complexity and minimize the consumption of additional printed circuit board real estate.
Abstract:
A method to reduce idle leakage power in I/O pins of an integrated circuit using external circuitry. Initially, I/O pins on a package are subdivided into those that will also remain powered up and those that will power down during idle state. When a system enters a low power mode, a signal is sent to the external circuitry. The signal notifies the I/O pins that always remain powered up to notify the external circuitry to power down the other set of I/O pins.