Abstract:
Semiconductor devices, and methods of fabricating the same, include forming a trench between a plurality of patterns on a substrate to be adjacent to each other, forming a first sacrificial layer in the trench, forming a first porous insulation layer having a plurality of pores on the plurality of patterns and on the first sacrificial layer, and removing the first sacrificial layer through the plurality of pores of the first porous insulation layer to form a first air gap between the plurality of patterns and under the first porous insulation layer.
Abstract:
Semiconductor memory devices and methods of forming semiconductor memory devices are provided. The methods may include forming insulation layers and cell gate layers that are alternately stacked on a substrate, forming an opening by successively patterning through the cell gate layers and the insulation layers, and forming selectively conductive barriers on sidewalls of the cell gate layers in the opening.
Abstract:
Semiconductor memory devices and methods of forming semiconductor memory devices are provided. The methods may include forming insulation layers and cell gate layers that are alternately stacked on a substrate, forming an opening by successively patterning through the cell gate layers and the insulation layers, and forming selectively conductive barriers on sidewalls of the cell gate layers in the opening.
Abstract:
A three-dimensional nonvolatile memory device and a method for fabricating the same include a semiconductor substrate, a plurality of active pillars, a plurality of gate electrodes, and a plurality of supporters. The semiconductor substrate includes a memory cell region and a contact region. The active pillars extend in the memory cell region perpendicularly to the semiconductor substrate. The gate electrodes intersect the active pillars, extend from the memory cell region to the contact region and are stacked on the semiconductor substrate. The supporters extend in the contact region perpendicularly to the semiconductor substrate to penetrate at least one or more of the gate electrodes.
Abstract:
Semiconductor devices, and methods of fabricating the same, include forming a trench between a plurality of patterns on a substrate to be adjacent to each other, forming a first sacrificial layer in the trench, forming a first porous insulation layer having a plurality of pores on the plurality of patterns and on the first sacrificial layer, and removing the first sacrificial layer through the plurality of pores of the first porous insulation layer to form a first air gap between the plurality of patterns and under the first porous insulation layer.
Abstract:
Provided is a semiconductor device, including gate structures on a substrate, the gate structures extending parallel to a first direction and being spaced apart from each other by a separation trench interposed therebetween, each of the gate structures including insulating patterns stacked on the substrate and a gate electrode interposed therebetween; vertical pillars connected to the substrate through the gate structures; an insulating spacer in the separation trench covering a sidewall of each of the gate structures; and a diffusion barrier structure between the gate electrode and the insulating spacer.
Abstract:
A nonvolatile memory device includes a memory gate pattern on a substrate, and a non-memory gate pattern on the substrate, the non-memory gate pattern being spaced apart from the memory gate pattern, wherein the non-memory gate pattern includes an ohmic layer, and the memory gate pattern is provided without an ohmic layer.
Abstract:
Semiconductor memory devices and methods of forming semiconductor memory devices are provided. The methods may include forming insulation layers and cell gate layers that are alternately stacked on a substrate, forming an opening by successively patterning through the cell gate layers and the insulation layers, and forming selectively conductive barriers on sidewalls of the cell gate layers in the opening.
Abstract:
Provided are a nonvolatile memory device and a method for fabricating the same. The nonvolatile memory device may include a stacked structure, a semiconductor pattern, an information storage layer, and a fixed charge layer. The stacked structure may be disposed over a semiconductor substrate. The stacked structure may include conductive patterns and interlayer dielectric patterns alternately stacked therein. The semiconductor pattern may be connected to the semiconductor substrate by passing through the stacked structure. The information storage layer may be disposed between the semiconductor pattern and the conductive patterns. The fixed charge layer may be disposed between the semiconductor pattern and the interlayer dielectric pattern. The fixed charge layer may include fixed charges. Electrical polarity of the fixed charges may be equal to electrical polarity of majority carriers of the semiconductor pattern.
Abstract:
A three-dimensional nonvolatile memory device and a method for fabricating the same include a semiconductor substrate, a plurality of active pillars, a plurality of gate electrodes, and a plurality of supporters. The semiconductor substrate includes a memory cell region and a contact region. The active pillars extend in the memory cell region perpendicularly to the semiconductor substrate. The gate electrodes intersect the active pillars, extend from the memory cell region to the contact region and are stacked on the semiconductor substrate. The supporters extend in the contact region perpendicularly to the semiconductor substrate to penetrate at least one or more of the gate electrodes.