Abstract:
Techniques from two basic approaches, structure-based immunogen design and phage T4 nanoparticle delivery, are developed to construct new plague vaccines. The NH2-terminal β-strand of F1 of Yersinia pestis is transplanted to the COOH-terminus of F1 of Yersinia pestis and the NH2-terminus sequence flanking the β-strand of F1 of Yersinia pestis is duplicated to eliminate polymerization but to retain the T cell epitopes. The mutated F1 is fused to the V antigen of Yersinia pestis to thereby form a fusion protein F1mut-V mutant, which produces a completely soluble monomer. The fusion protein F1mut-V is then arrayed on phage T4 nanoparticles via a small outer capsid protein, Soc, from a T4 phage or a T4-related phage. Both the soluble and T4 decorated F1mut-V provided approximately 100% protection to mice and rats against pneumonic plague evoked by high doses of Yersinia pestis CO92.
Abstract:
Complex viruses are assembled from simple protein subunits by sequential and irreversible assembly. During genome packaging in bacteriophages, a powerful molecular motor assembles at the special portal vertex of an empty prohead to initiate packaging. An aspect of the invention relates to the phage T4 packaging machine being highly promiscuous, translocating DNA into finished phage heads as well as into proheads. Single motors can force exogenous DNA into phage heads at the same rate as into proheads and phage heads undergo repeated initiations, packaging multiple DNA molecules into the same head. This shows that the phage DNA packaging machine has unusual conformational plasticity, powering DNA into an apparently passive capsid receptacle, including the highly stable virus shell, until it is full. These features allow for the design of a novel class of nanocapsid delivery vehicles.
Abstract:
Described is an “artificial virus” (AV) programmed with biomolecules that can enter human cells and carry out precise human genome modification. The AVs comprise: at least one viral vector, such as bacteriophage T4; at least one therapeutic molecule, such as DNA, RNA, protein and their complex; and a lipid coating. Also described is a method of human genome modification, using such an AV, and a method of program such an AV.
Abstract:
A method and apparatus including an inverted microscope sample stage, a photomask, a light diffuser, a light pipe, and a light source. The light source is confocal with an inverted microscope, and the apparatus is configured to produce a ruthenium-mediated photocrosslink pattern into a subject. The photomask may be disposed between the inverted microscope sample stage and the light diffuser. The light diffuser may be disposed between the photomask and the light pipe. The light pipe may be disposed between the light diffuser and the light source. The light source may be disposed above the light pipe,
Abstract:
The present disclosure relates to a device for and a method of interfacial electrofabrication of freestanding biopolymer membranes comprising at least one anode; at least one cathode; at least one anode electrolyte; and at least one cathode electrolyte, wherein at least a portion of the at least one anode electrolyte and the at least one cathode electrolyte form an interface, wherein at least one polyelectrolyte complex membrane (PECM) forms at the interface of the at least one anode electrolyte and the at least one cathode electrolyte, wherein the at least one anode electrolyte and the at least one cathode electrolyte are separated by the PECM, wherein the at least one anode is disposed in the at least one anode electrolyte, wherein the at least one cathode is disposed in the at least one cathode electrolyte, and wherein the at least one anode and the at least one cathode are distal from the interface of the at least one anode electrolyte and the at least one cathode electrolyte.
Abstract:
Described is an engineered viral particle programmed with T cell targeting specificity. The viral particles comprise: at least one viral vector, such as bacteriophage T4; and at least one CD4-binding protein displayed on the surface of the viral vector. Also described is a method of reactivate latent HIV-1 and cure patient with HIV-1 infection, using such an engineered viral particle.
Abstract:
Described is hybrid viral vector comprising: a first virus such as bacteriophage T4; one or more second virus such as adeno-associated virus (AAV) attached to the first virus through cross-bridges, such as avidin-biotin cross-bridges; one or more DNA molecules packaged in the first virus; one or more nucleic acid molecules packaged in the second virus; and one or more proteins displayed on the surface of the first virus. Also described are methods of making and using such a hybrid viral vector.
Abstract:
Bivalent immunogenic compositions against anthrax and plague are disclosed herein. One bivalent immunogenic composition comprises a triple fusion protein containing three antigens, F1 and V from Yersinia pestis and PA antigen from Bacillus anthracis fused in-frame and retaining structural and functional integrity of all three antigens. Another bivalent immunogenic composition comprises bacteriophage nanoparticles arrayed with these three antigens on the capsid surface of the bacteriophage nanoparticles. These bivalent immunogenic compositions are able to elicit robust immune response in a subject administered said the bivalent immunogenic compositions and provide protection to the subject against sequential or simultaneous challenge with both anthrax and plague pathogens.
Abstract:
Described is hybrid viral vector comprising: a first virus such as bacteriophage T4; one or more second virus such as adeno-associated virus (AAV) attached to the first virus through cross-bridges, such as avidin-biotin cross-bridges; one or more DNA molecules packaged in the first virus; one or more nucleic acid molecules packaged in the second virus; and one or more proteins displayed on the surface of the first virus. Also described are methods of making and using such a hybrid viral vector.
Abstract:
Complexing or chelating agents that offer strong, selective bonding with uranium as well as a broad pH range of effectiveness, specifically including the pH range around 8.2, together with the acrylic double bonds required for radiation-induced grafting on polymers to remove uranium from a solution such as seawater. The novel adsorbing species are phosphorus-containing molecules, in particular organic phosphates, phosphonates and phosphoric acids. Organic phosphorus compounds, for example, organic phosphates, phosphonates, and phosphoric acids, are attached to polymer fibers to form fibers, fiber fabrics or membranes that are effective, or show activity, in uranium adsorption.