Low angle, low energy physical vapor deposition of alloys

    公开(公告)号:US5725739A

    公开(公告)日:1998-03-10

    申请号:US677659

    申请日:1996-07-08

    Applicant: Yongjun Hu

    Inventor: Yongjun Hu

    Abstract: An alloy or composite is deposited in a recess feature of a semiconductor substrate by sputtering an alloy or composite target into a recess, to form a first layer of deposited material. The first layer of deposited material is resputtered at a low angle and low energy, to redeposit the first layer of deposited material onto the bottom of the recess as a second layer of deposited material having a different stoichiometry than that of the first deposited material. In a further embodiment, a sputtering chamber ambient is comprised of argon and nitrogen. In yet a further embodiment, the resputtering step is followed by deposition of at least one layer of material with a different stoichiometry than that of the second deposited layer, to form a "graded" stoichiometry of material deposited in the recess.

    Composite permanent magnetic material and preparation method thereof
    12.
    发明授权
    Composite permanent magnetic material and preparation method thereof 有权
    复合永磁材料及其制备方法

    公开(公告)号:US09048016B2

    公开(公告)日:2015-06-02

    申请号:US13549421

    申请日:2012-07-14

    Abstract: The invention relates to the field of permanent magnet materials, and discloses a composite permanent magnet material. The material is formed by splicing at least one permanent magnet material, with binding agent in between. The novel composite permanent magnet material that is formed by splicing different magnets greatly enriches the existing permanent magnet system and can completely replace the expensive rare metallic magnetic material. The composite permanent magnet material disclosed by the invention has high performances. The magnetic performance of the magnet can be regulated and controlled by adjusting the type and length of the magnets. In particular, the magnetic blank between the bonded NdFeB and the sintered NdFeB provides the designer and user of permanent magnetic motors with broader and flexible in material selection space and cost selection space.

    Abstract translation: 本发明涉及永磁材料领域,并公开了复合永磁材料。 该材料通过将至少一种永久磁铁材料与其中的粘结剂拼接而形成。 通过拼接不同磁体形成的新型复合永磁材料大大丰富了现有的永磁体系统,可以完全代替昂贵的稀有金属磁性材料。 本发明公开的复合永磁材料具有较高的性能。 通过调整磁体的种类和长度可以调节和控制磁体的磁性能。 特别地,结合的NdFeB和烧结NdFeB之间的磁性空白为永磁电动机的设计者和用户提供了更广泛灵活的材料选择空间和成本选择空间。

    NOVEL COMPOSITE PERMANENT MAGNETIC MATERIAL AND PREPARATION METHOD THEREOF
    13.
    发明申请
    NOVEL COMPOSITE PERMANENT MAGNETIC MATERIAL AND PREPARATION METHOD THEREOF 有权
    新型复合永磁材料及其制备方法

    公开(公告)号:US20130076469A1

    公开(公告)日:2013-03-28

    申请号:US13549421

    申请日:2012-07-14

    Abstract: The invention relates to the field of permanent magnet materials, and discloses a composite permanent magnet material. The material is formed by splicing at least one permanent magnet material, with binding agent in between. The novel composite permanent magnet material that is formed by splicing different magnets greatly enriches the existing permanent magnet system and can completely replace the expensive rare metallic magnetic material. The composite permanent magnet material disclosed by the invention has high performances. The magnetic performance of the magnet can be regulated and controlled by adjusting the type and length of the magnets. In particular, the magnetic blank between the bonded NdFeB and the sintered NdFeB provides the designer and user of permanent magnetic motors with broader and flexible in material selection space and cost selection space.

    Abstract translation: 本发明涉及永磁材料领域,并公开了复合永磁材料。 该材料通过将至少一种永久磁铁材料与其中的粘结剂拼接而形成。 通过拼接不同磁体形成的新型复合永磁材料大大丰富了现有的永磁体系统,可以完全代替昂贵的稀有金属磁性材料。 本发明公开的复合永磁材料具有较高的性能。 通过调整磁体的种类和长度可以调节和控制磁体的磁性能。 特别地,结合的NdFeB和烧结NdFeB之间的磁性空白为永磁电动机的设计者和用户提供了更广泛灵活的材料选择空间和成本选择空间。

    Electrically conductive line, method of forming an electrically conductive line, and method of reducing titanium silicide agglomeration in fabrication of titanium silicide over polysilicon transistor gate lines
    14.
    发明申请
    Electrically conductive line, method of forming an electrically conductive line, and method of reducing titanium silicide agglomeration in fabrication of titanium silicide over polysilicon transistor gate lines 有权
    导电线,形成导电线的方法以及在多晶硅栅极线上制造钛硅化物时还原钛硅化物聚集的方法

    公开(公告)号:US20060197225A1

    公开(公告)日:2006-09-07

    申请号:US11074106

    申请日:2005-03-07

    Abstract: The invention includes an electrically conductive line, methods of forming electrically conductive lines, and methods of reducing titanium silicide agglomeration in the fabrication of titanium silicide over polysilicon transistor gate lines. In one implementation, a method of forming an electrically conductive line includes providing a silicon-comprising layer over a substrate. An electrically conductive layer is formed over the silicon-comprising layer. An MSixNy-comprising layer is formed over the electrically conductive layer, where “x” is from 0 to 3.0, “y” is from 0.5 to 10, and “M” is at least one of Ta, Hf, Mo, and W. An MSiz-comprising layer is formed over the MSixNy-comprising layer, where “z” is from 1 to 3.0. A TiSia-comprising layer is formed over the MSiz-comprising layer, where “a” is from 1 to 3.0. The silicon-comprising layer, the electrically conductive layer, the MSixNy-comprising layer, the MSiz-comprising layer, and the TiSia-comprising layer are patterned into a stack comprising an electrically conductive line. Other aspects and implementations are contemplated.

    Abstract translation: 本发明包括导电线,形成导电线的方法,以及在多晶硅晶体管栅极线上制造钛硅化物时还原钛硅化物聚集的方法。 在一个实施方案中,形成导电线的方法包括在衬底上提供含硅层。 在含硅层之上形成导电层。 在导电层上方形成了一个MSi x N N y S y - 含量,其中“x”为0至3.0,“y”为0.5至10,以及 “M”是Ta,Hf,Mo和W中的至少一种。在MSi x N y y上,形成MSiZb含量层。 其中“z”为1〜3.0。 在MSiZ包含层上形成TiSi 1 a含量层,其中“a”为1至3.0。 包含硅的层,导电层,包含MSi x N的混合层,包含MSi的混合层和 将TiSi 1 a含有层图案化成包括导电线的堆叠。 考虑了其他方面和实现。

    Process for forming a diffusion barrier material nitride film
    16.
    发明授权
    Process for forming a diffusion barrier material nitride film 失效
    用于形成扩散阻挡材料氮化物膜的工艺

    公开(公告)号:US06998341B2

    公开(公告)日:2006-02-14

    申请号:US10771828

    申请日:2004-02-04

    Applicant: Yongjun Hu

    Inventor: Yongjun Hu

    Abstract: A process is disclosed for manufacturing a film that is smooth and has large nitride grains of a diffusion barrier material. Under the process, a nitride of the diffusion barrier material is deposited by physical vapor deposition in an environment of nitrogen. The nitrogen content of the environment is selected at an operating level such that nitride nuclei of the diffusion barrier material are evenly distributed. A grain growth step is then conducted in the nitrogen environment to grow a film of large nitride grains of the diffusion barrier material. Also disclosed is a stack structure suitable for MOS memory circuits incorporating a lightly nitrided refractory metal silicide diffusion barrier with a covering of a nitride of a diffusion barrier material. The stack structure is formed in accordance with the diffusion barrier material nitride film manufacturing process and exhibits high thermal stability, low resistivity, long range agglomeration blocking, and high surface smoothness.

    Abstract translation: 公开了一种用于制造光滑并具有大的扩散阻挡材料的氮化物晶粒的膜的方法。 在该过程中,通过物理气相沉积在氮气环境中沉积扩散阻挡材料的氮化物。 选择环境氮含量,使得扩散阻挡材料的氮化物核均匀分布。 然后在氮环境中进行晶粒生长步骤,以生长扩散阻挡材料的大的氮化物晶粒的膜。 还公开了一种适合于MOS存储器电路的堆叠结构,该MOS存储器电路结合了具有覆盖扩散阻挡材料的氮化物的轻度氮化难熔金属硅化物扩散阻挡层。 堆叠结构根据扩散阻挡材料氮化物膜制造工艺形成,并且具有高热稳定性,低电阻率,远距离聚集阻挡和高表面光滑度。

    Metal gate engineering for surface p-channel devices

    公开(公告)号:US20060017107A1

    公开(公告)日:2006-01-26

    申请号:US11012049

    申请日:2004-12-14

    Applicant: Yongjun Hu

    Inventor: Yongjun Hu

    Abstract: A semiconductor device, such as a CMOS device, having gates with a high work function in PMOS regions and low work functions in NMOS regions and a method of producing the same. Using nitrogen implantation or plasma annealing, a low work function W (or CoSix)/TaSixNy/GOx/Si gate stack is formed in the NMOS regions while a high work function W (or CoSix)/Ta5Si3/GOx/Si gate stack is formed in the PMOS regions. The improved process also eliminates the need for a nitrided GOx which is known to degrade gm (transconductance) performance. The materials of the semiconductor devices exhibit improved adhesion characteristics to adjacent materials and low internal stress.

    Methods of providing ohmic contact
    18.
    发明申请
    Methods of providing ohmic contact 有权
    提供欧姆接触的方法

    公开(公告)号:US20050181599A1

    公开(公告)日:2005-08-18

    申请号:US11071922

    申请日:2005-03-04

    Abstract: Various embodiments of the invention described herein reduce contact resistance to a silicon-containing material using a first refractory metal material overlying the silicon-containing material and a second refractory metal material overlying the first refractory metal material. Each refractory metal material is a conductive material containing a refractory metal and an impurity. The first refractory metal material is a metal-rich material, containing a level of its impurity at less than a stoichiometric level. The second refractory metal material has a lower affinity for the impurities than does the first refractory metal material. The second refractory metal material can thus serve as an impurity donor during an anneal or other exposure to heat. This net migration of the impurities to the first refractory metal material limits growth of a metal silicide interface between the first refractory metal material and the underlying silicon-containing material, thereby providing ohmic contact with attendant thermal tolerance.

    Abstract translation: 使用覆盖含硅材料的第一耐火金属材料和覆盖第一难熔金属材料的第二难熔金属材料来降低与含硅材料的接触电阻。 每种难熔金属材料是含有难熔金属和杂质的导电材料。 第一难熔金属材料是富含金属的材料,其含量低于化学计量水平的杂质。 与第一难熔金属材料相比,第二难熔金属材料对杂质的亲和力较低。 因此,第二难熔金属材料可以在退火或其它暴露于热的过程中用作杂质供体。 这种杂质向第一难熔金属材料的净迁移限制了第一难熔金属材料和下面的含硅材料之间的金属硅化物界面的生长,从而提供与耐热性的欧姆接触。

    NANOMETER ENGINEERING OF METAL-SUPPORT CATALYSTS
    19.
    发明申请
    NANOMETER ENGINEERING OF METAL-SUPPORT CATALYSTS 失效
    金属支撑催化剂的纳米工程

    公开(公告)号:US20050123464A1

    公开(公告)日:2005-06-09

    申请号:US10793880

    申请日:2004-03-08

    Abstract: A method of forming a catalyst body by forming a first layer of hemispherical grain polysilicon over a substrate, and oxidizing at least a portion of the first layer to form a second layer of silica. Additionally, forming a third layer of nitride material over the second layer, and forming a catalyst material over the nitride layer, can be performed before annealing to form a catalyst body.

    Abstract translation: 一种通过在衬底上形成半球形晶粒多晶硅的第一层并且氧化至少一部分第一层以形成第二层二氧化硅来形成催化剂体的方法。 此外,在退火之前可以在第二层上形成第三层氮化物材料,并在氮化物层上形成催化剂材料以形成催化剂体。

Patent Agency Ranking