Abstract:
A mass spectrometer for analyzing a sample may include an analysis chamber for analyzing the sample and a first vacuum pump operably connected to the analysis chamber, wherein the first vacuum pump operates to create a first vacuum state. The mass spectrometer may also include a sample-preparation chamber operably connected to the analysis chamber and a second vacuum pump that operates to create a second vacuum state, wherein the first vacuum state is a lower pressure than the second vacuum state. The second vacuum pump may be operably connected to the first vacuum pump in a first configuration, and the second vacuum pump may be operably connected to the sample-preparation chamber in a second configuration.
Abstract:
Systems and methods for automatic gain control in mass spectrometers are disclosed. An exemplary system may include a mass spectrometer, comprising a lens configured to receive a supply of ions, and a mass analyzer. The mass analyzer may include an ion trap for trapping the supplied ions. The mass analyzer may also include an ion detector for detecting ions that exit the ion trap. The lens may focus the ions non-uniformly based on mass of the ions to compensate for space charge effects reflected in a measurement output of the mass spectrometer.
Abstract:
Systems and methods are disclosed for calibrating mass spectrometers. In accordance with one implementation, a system comprises a calibrant chamber within a housing of a mass spectrometer. The system also comprises a permeation tube enclosed within the calibrant chamber, wherein the tube contains a calibrant chemical that continuously outgasses the calibrant chemical. The outgassed calibrant chemical may be introduced to the mass spectrometer for analysis. The system may also comprise a heating block to control the temperature of the calibrant chemical. The system may further comprise a valve that introduces a known amount of the calibrant chemical into the calibrant chamber. In accordance with the present disclosure, systems and methods are provided for calibrating a mass spectrometer abundance scale.
Abstract:
Systems and methods are disclosed for calibrating mass spectrometers. In accordance with one implementation, a system comprises a calibrant chamber within a housing of a mass spectrometer. The system also comprises a permeation tube enclosed within the calibrant chamber, wherein the tube contains a calibrant chemical that continuously outgasses the calibrant chemical. The outgassed calibrant chemical may be introduced to the mass spectrometer for analysis. The system may also comprise a heating block to control the temperature of the calibrant chemical. The system may further comprise a valve that introduces a known amount of the calibrant chemical into the calibrant chamber. In accordance with the present disclosure, systems and methods are provided for calibrating a mass spectrometer abundance scale.
Abstract:
A chemical pre-concentrator includes a conduit defining a flow path between two ends and having a heating element disposed within the conduit, such that the heating element has at least one sorbent material deposited directly on at least a portion of a conductive surface of the heating element. Some such heating elements are in the form of electrically conductive strips defining both a plurality of apertures through the strip and a series of undulations spaced along the flow path.
Abstract:
A mass spectrometer for analyzing a sample may include an analysis chamber for analyzing the sample and a first vacuum pump operably connected to the analysis chamber, wherein the first vacuum pump operates to create a first vacuum state. The mass spectrometer may also include a sample-preparation chamber operably connected to the analysis chamber and a second vacuum pump that operates to create a second vacuum state, wherein the first vacuum state is a lower pressure than the second vacuum state. The second vacuum pump may be operably connected to the first vacuum pump in a first configuration, and the second vacuum pump may be operably connected to the sample-preparation chamber in a second configuration.
Abstract:
Processing a liquid sample (204) having an analyte (206) by reducing a pressure in a container (200) including the liquid sample to less than atmospheric pressure and maintaining a reduced pressure in the container. Reducing the pressure in the container (200) and optionally agitating the liquid sample increases an amount of vapor-phase analyte (206) above the liquid sample. In some cases, a concentration of the vapor-phase analyte is further increased, for example, with a chemical trap (502). The vapor-phase analyte can be provided to a chemical analyzer (302).
Abstract:
Methods, devices, and systems are disclosed for releasing a sample from a carrier medium. A method of releasing a sample from a carrier medium comprises treating a sample on a carrier medium with a first organic reagent, wherein when the sample contains at least one inorganic salt, the first organic reagent binds to a cation of the inorganic salt to produce both a first volatile compound and an isolated anion of the inorganic salt; treating the sample on the carrier medium with a second organic reagent, wherein the second organic reagent reacts with the isolated anion to produce a second volatile compound; and releasing the treated sample from the carrier medium, wherein when the first and the second volatile compounds are produced, the releasing step releases at least one of the first and second volatile compounds from the carrier medium.
Abstract:
Systems and methods for automatic gain control in mass spectrometers are disclosed. An exemplary system may include a mass spectrometer, comprising a lens configured to receive a supply of ions, and a mass analyzer. The mass analyzer may include an ion trap for trapping the supplied ions. The mass analyzer may also include an ion detector for detecting ions that exit the ion trap. The lens may focus the ions non-uniformly based on mass of the ions to compensate for space charge effects reflected in a measurement output of the mass spectrometer.
Abstract:
An ion trap for a mass spectrometer is disclosed. The ion trap includes a ring electrode and first and second electrodes which are arranged on opposite sides of the ring electrode. The ring electrode and the first and second electrodes are configured to generate an electric field based on the received RF signal. The first electrode defines a first aperture and the second electrode defines a second aperture, the first aperture and the second aperture being asymmetric relative to each other and configured to generate a hexapole field.