Abstract:
Various implementations described herein are directed to an implementation of a higher order multiplexer using lower order multiplexers. In an embodiment, the implementation requires a slight modification to the existing circuitry design of the lower multiplexers. A plurality of multiplexers may be coupled with each other such that a common input port and output port is formed. Using an enable signal, only one of the coupled multiplexers may be enabled at a time while the remaining multiplexers are switched off. Therefore, upon receiving a select signal indicating an address of a memory cell, the lower multiplexers coupled together function as a higher order multiplexer in selecting the appropriate column corresponding to the memory cell.
Abstract:
A memory device having an array of memory cells connected to a core voltage level, and access circuitry used to perform a write operation in order to write data into a plurality of addressed memory cells. At least one bit line associated with at least each column in the array containing an addressed memory cell is precharged to the peripheral voltage level prior to the write operation being performed. Word line driver circuitry is then configured to assert a word line signal at the core voltage level on the word line associated with the row of the array containing the addressed memory cells. Write multiplexing driver circuitry asserts a mux control signal to write multiplexing circuitry which then couples the bit line of each addressed memory cell to the write driver circuitry in dependence on the mux control signal identifying which column contains the addressed memory cells.
Abstract:
Various implementations described herein refer to a method for providing single port memory with multiple different banks having a first bank and a second bank that is different than the first bank. The method may include coupling multiple wordlines to the single port memory including coupling a first wordline to the first bank and coupling a second wordline to the second bank. The method may include performing multiple memory access operations concurrently in the single port memory.
Abstract:
In a particular implementation, a circuit comprises: a memory array including a plurality of bit cells, where each of the bit cells are coupled to a respective bit path; a first multiplexer comprising a plurality of column address locations, where each of the plurality of column address locations is coupled to the memory array and corresponds to a respective bit path capacitance; and a variable capacitance circuit coupled to a reference path and configured to substantially match reference path capacitance to each of the respective bit path capacitances.
Abstract:
Various implementations described herein refer to a method for providing memory with one or more banks. The method may include coupling read-write column multiplexer circuitry to the memory via bitlines including coupling a write column multiplexer to the bitlines for write operations and coupling a read column multiplexer to the bitlines for read operations. The method may include performing concurrent read operations and write operations in the one or more banks of the memory with the write column multiplexer and the read column multiplexer via the bitlines.
Abstract:
Various implementations described herein refer to a method for providing single port memory with a bitcell array arranged in columns and rows. The method may include coupling a wordline to the single port memory including coupling the wordline to the columns of the bitcell array. The method may include performing multiple memory access operations concurrently in the single port memory including performing a read operation in one column of the bitcell array using the wordline while performing a write operation in another column of the bitcell array using the wordline, or performing a write operation in one column of the bitcell array using the wordline while performing a read operation in another column of the bitcell array using the same wordline.
Abstract:
Various implementations described herein are directed to a circuit. The circuit may include a memory circuit having a first latch. The circuit may include a power-on-reset circuit having a second latch coupled to the first latch. The second latch may be configured to reset the first latch to a predetermined state at power-up.
Abstract:
Various implementations described herein are directed to a circuit. The circuit may include a memory circuit having a first latch. The circuit may include a power-on-reset circuit having a second latch coupled to the first latch. The second latch may be configured to reset the first latch to a predetermined state at power-up.
Abstract:
Various implementations described herein refer to a method for providing memory with one or more banks. The method may include coupling read-write column multiplexer circuitry to the memory via bitlines including coupling a write column multiplexer to the bitlines for write operations and coupling a read column multiplexer to the bitlines for read operations. The method may include performing concurrent read operations and write operations in the one or more banks of the memory with the write column multiplexer and the read column multiplexer via the bitlines.
Abstract:
Various implementations described herein are directed to an implementation of a higher order multiplexer using lower order multiplexers. In an embodiment, the implementation requires a slight modification to the existing circuitry design of the lower multiplexers. A plurality of multiplexers may be coupled with each other such that a common input port and output port is formed. Using an enable signal, only one of the coupled multiplexers may be enabled at a time while the remaining multiplexers are switched off. Therefore, upon receiving a select signal indicating an address of a memory cell, the lower multiplexers coupled together function as a higher order multiplexer in selecting the appropriate column corresponding to the memory cell.