摘要:
A method to improve a lithographic process for imaging a portion of a patterning device pattern onto a substrate using a lithographic projection having an illumination system and projection optics, the method including: (1) obtaining a simulation model that models projection of radiation by the projection optics, wherein the simulation model models an effect of an obscuration in the projection optics, and configuring, based on the model, the portion of the patterning device pattern, and/or (2) obtaining a simulation model that models projection of radiation by the projection optics, wherein the simulation model models an anamorphic demagnification of radiation by the projection optics, and configuring, based on the model, the portion of the patterning device pattern taking into account an anamorphic manufacturing rule or anamorphic manufacturing rule ratio.
摘要:
Methods for configuring a patterning process based on results of another patterning process is described. The method includes obtaining a first set of contours by simulating a first patterning process using a design layout in a first orientation. The contours satisfy a design specification associated with the design layout and correspond to a first set of process window conditions. A second patterning process is configured based on a second orientation of the design layout, the first set of process window conditions and the first set of contours. The second patterning process is associated with one or more design variables (e.g., illumination, mask pattern) that affect a second set of contours. The configuring includes adjusting one or more design variables until the second set of contours are within a desired matching threshold with the first set of contours.
摘要:
Disclosed is a method of determining a process window within a process space comprising obtaining contour data relating to features to be provided to a substrate across a plurality of layers, for each of a plurality of process conditions associated with providing the features across said plurality of layers and failure mode data describing constraints on the contour data across the plurality of layers. The failure mode data is applied to the contour data to determine a failure count for each process condition; and the process window is determined by associating each process condition to its corresponding failure count. Also disclosed is a method of determining an actuation constrained subspace of the process window based on actuation constraints imposed by the plurality of actuators.
摘要:
A method for determining a wavefront parameter of a patterning process. The method includes obtaining a reference performance (e.g., a contour, EPE, CD) of a reference apparatus (e.g., a scanner), a lens model for a patterning apparatus configured to convert a wavefront parameter of a wavefront to actuator movement, and a lens fingerprint of a tuning apparatus (e.g., a to-be-matched scanner). Further, the method involves determining the wavefront parameter (e.g., a wavefront parameter such as tilt, offset, etc.) based on the lens fingerprint of the tuning apparatus, the lens model, and a cost function, wherein the cost function is a difference between the reference performance and a tuning apparatus performance.
摘要:
A method to improve a lithographic process of imaging a portion of a design layout onto a substrate using a lithographic projection apparatus, the method including: computing a multi-variable cost function, the multi-variable cost function being a function of a stochastic variation of a characteristic of an aerial image or a resist image, or a function of a variable that is a function of the stochastic variation or that affects the stochastic variation, the stochastic variation being a function of a plurality of design variables that represent characteristics of the lithographic process; and reconfiguring one or more of the characteristics of the lithographic process by adjusting one or more of the design variables until a certain termination condition is satisfied.
摘要:
A method to improve a lithographic process for imaging a portion of a design layout onto a substrate using a lithographic projection apparatus, the method including: computing a multi-variable cost function of a plurality of design variables that are characteristics of the lithographic process, and reconfiguring the characteristics of the lithographic process by adjusting the design variables until a predefined termination condition is satisfied. The multi-variable cost function may be a function of one or more pattern shift errors. Reconfiguration of the characteristics may be under one or more constraints on the one or more pattern shift errors.
摘要:
A method of generating complementary masks based on a target pattern having features to be imaged on a substrate for use in a multiple-exposure lithographic imaging process. In embodiments, the invention provides a double exposure lithography method which trims (i.e., removes) unwanted SB residues from the substrate, that is suitable for use, for example, when printing 65 nm or 45 nm node devices or less. According to certain aspects, the present invention provides the ability to utilize large SBs due to the mutual trimming of SBs that results from the process of the present invention. Specifically, in the given process, both the H-mask and the V-mask contain circuit features and SBs, but they are in different corresponding orientations, and therefore, there is a mutual SB trimming for the H-mask and V-mask during the two exposures.
摘要:
Apparatuses and techniques for suppressing a zeroth order portion of a configured radiation beam. In some embodiments, an extreme ultraviolet (EUV) lithographic apparatus for forming an image on a substrate by use of an EUV radiation beam that is configured by a patterning device comprising a pattern of reflective regions and partially reflective regions, wherein the partially reflective regions are configured to suppress and apply a phase shift to a portion of the EUV radiation beam, may include a projection system. The projection system may be configured to suppress a zeroth order portion of a configured EUV radiation beam, and direct an unsuppressed portion of a configured EUV radiation beam towards a substrate to form an image on the substrate.
摘要:
Scanner aberration impact modeling in a semiconductor manufacturing process, which may facilitate co-optimization of multiple scanners. Scanner aberration impact modeling may include executing a calibrated model and controlling a scanner based on output from the model. The model is configured to receive patterning system aberration data. The model is calibrated with patterning system aberration calibration data and corresponding patterning process impact calibration data. New patterning process impact data may be determined, based on the model, for the received patterning system aberration data. The model includes a hyperdimensional function configured to correlate the received patterning system aberration data with the new patterning process impact data. The hyperdimensional function is configured to correlate the received patterning system aberration data with the new patterning process impact data in an approximation form, in lieu of a full simulation, without involving calculation of an aerial image or a representation thereof.
摘要:
A method to improve a lithographic process for imaging a portion of a patterning device pattern onto a substrate using a lithographic projection having an illumination system and projection optics, the method including: (1) obtaining a simulation model that models projection of radiation by the projection optics, wherein the simulation model models an effect of an obscuration in the projection optics, and configuring, based on the model, the portion of the patterning device pattern, and/or (2) obtaining a simulation model that models projection of radiation by the projection optics, wherein the simulation model models an anamorphic demagnification of radiation by the projection optics, and configuring, based on the model, the portion of the patterning device pattern taking into account an anamorphic manufacturing rule or anamorphic manufacturing rule ratio.