Abstract:
A sample dispatcher is disclosed and is configured for individually introducing a plurality of portions of one or more sample fluids into a flow of a mobile phase of a liquid separation system. The liquid separation system is configured for separating compounds of the sample fluids and comprises a mobile phase drive configured for driving the mobile phase through a separation unit configured for separating compounds of the sample fluids in the mobile phase. The sample dispatcher comprises one or more sample reservoirs, each configured for receiving and temporarily storing a respective sample fluid portion or at least a part thereof, and a bypass channel.
Abstract:
To determine a corrected flow rate value of a mobile phase flowing in a liquid chromatography (LC) system, a flow rate of the mobile phase at a selected reference position in the LC system is measured to produce one or more flow rate values. A model of the LC system is applied to the flow rate value(s) to determine the corrected flow rate value(s). The model includes a distribution of capacitive elements and resistive elements arranged according to a topology of the LC system. The capacitive and resistive elements are representative of system and solvent properties affecting flow rate while operating the LC system. The system and solvent properties may be properties affecting the flow rate while operating the LC system under dynamic conditions.
Abstract:
Disclosed is a sample dispatcher configured for individually introducing a plurality of portions of one or more sample fluids into a flow of a mobile phase of a separation system configured for separating compounds of the sample fluids. The separation system comprises a mobile phase drive configured for driving the mobile phase through a separation unit configured for separating compounds of the sample fluids in the mobile phase. The sample dispatcher comprises a plurality of sample reservoirs, each configured for receiving and temporarily storing a respective sample fluid portion or at least a part thereof. The sample dispatcher is configured for selectively coupling one of the plurality of sample reservoirs between the mobile phase drive and the separation unit, and further for coupling at least two of the plurality of sample reservoirs in parallel between the mobile phase drive and the separation unit.
Abstract:
A fluid processing device (10) for processing fluid, wherein the fluid processing device (10) comprises a first fluid drive unit (20) configured for driving a first fluid along a first flow path (85), a second fluid drive unit (20′) configured for driving a second fluid along a second flow path (86), and a fluidic switch (90) fluidically coupled to the first flow path (85) and to the second flow path (86) and configured for being switchable for transferring first fluid from the first flow path (85) into the second flow path (86) without interruption of fluid flow along at least one of the first flow path (85) and the second flow path (86).
Abstract:
A sample separation apparatus includes a metering device for metering a predefined amount of fluidic sample to be separated by a sample separation apparatus, a metering path for fluidically coupling the metering device and a sample source providing fluidic sample to be metered, and a control device. The control device is configured for controlling operation of the metering device for at least partially compensating for a deviation between a target value to be metered and an actual value of an amount of fluidic sample that is metered, the deviation resulting from a thermally induced volume change in the sample separation apparatus.
Abstract:
Disclosed is a pumping apparatus (200) configured for delivering a fluid. The pumping apparatus (200) comprises a pumping chamber (220) configured for receiving one or more fluids (310, 320) in defined proportions and for further delivering the received fluids, an outlet (240), fluidically coupling to a first position (350) in the pumping chamber (220), for outleting the fluid to be delivered, and a channel (410). The channel (410) fluidically couples on one side to a second position (340) in the pumping chamber (220) and on the other side to the outlet (240), so that—in operation—a first portion of the delivered fluid as outlet at the outlet (240) is received from the first position (350) in the pumping chamber (220), and a second portion of the delivered fluid as outlet at the outlet (240) is received from the second position (340) in the pumping chamber (220). One of the first (350) and second (340) positions is a spatial position within the pumping chamber (220) where fluid components having a first property would tend to accumulate during operation of the pumping apparatus (200) if such position were not coupled to the outlet (240), with such accumulation resulting from variations in the first property.
Abstract:
A device for determining a leakage of fluid in a piston pump, wherein the piston pump comprises a piston arranged in such a manner that it can reciprocate in a piston chamber for delivering fluid, wherein the device comprises a control unit for controlling the piston in such a manner that the piston executes two piston chamber evacuation processes with different evacuation times, in each case for at least partial evacuating of fluid located in the piston chamber, and a determination unit for determining the leakage based on a comparison of fluid quantities evacuated from the piston chamber in the two piston chamber evacuation processes.
Abstract:
A sample separation apparatus (200) for separating a fluidic sample, the sample separation apparatus (200) comprising a first separation unit (204) for separating the fluidic sample, a first fluid drive (202) configured for conducting the fluidic sample to be separated through the first separation unit (204), a second separation unit (208), arranged downstream of the first separation unit (204), for further separating the fluidic sample after treatment by the first separation unit (204), a second fluid drive (206) configured for at least partially conducting the fluidic sample, after treatment by the first separation unit (204), through the second separation unit (208), and a fluidic valve (218) having fluidic interfaces (222, 224, 226, 228) fluidically coupled to the first fluid drive (202) and the second fluid drive (206) and being switchable for performing the separation of the fluidic sample, wherein the sample separation apparatus (200) is configured for adjusting a pressure at a predefined position to a predefined value, wherein the predefined position is in a fluidic path between an outlet (270) of the first separation unit (204) and an inlet (272) of the second separation unit (208) or in fluid communication with this fluidic path.
Abstract:
A filter for filtering debris out of a fluid flowing along a fluid flow direction in a fluidic member of a sample separation device, the filter comprising a plurality of filter structures stacked along the fluid flow direction and each having pores with defined pore size, wherein the defined pore size of the stacked filter structures decreases along the fluid flow direction.
Abstract:
A method and a system for introducing a sample into a mobile phase of a chromatography system is provided. The method includes initially directing the mobile phase directly into a separation unit of the chromatography system, bypassing a sample loop, the mobile phase including a combined solvent, metered from a pressurized first solvent and a second solvent; loading the sample into the sample loop, while the mobile phase continues to be directed directly into the separation unit; pressurizing the sample in the sample loop with the pressurized first solvent, while the mobile phase continues to be directed directly into the separation unit; and switching the sample loop into the mobile phase, thereby introducing the pressurized sample to the separation unit.