Abstract:
An air precleaner arrangement for an internal combustion engine comprises a screen, a shroud, a fan, a first cyclone filter and a second cyclone filter. The screen has air permeable openings sized to retain debris. A fan is cooperating with the screen to provide an air stream from an upstream surface through the openings of the screen to a downstream surface. The shroud encloses the fan and the screen. The first cyclone filter has an air inlet receiving air on the downstream surface of the screen, an air outlet and a scavenge port in communication with interior of the screen and thus with the air stream of the fan. The second cyclone filter has an air inlet connected to the air outlet of the first cyclone filter, an air outlet connected to the air inlet of the internal combustion engine and a scavenge port connected to an exhaust venturi in the exhaust stream of the engine.
Abstract:
An engine speed detector detects an engine speed of an engine having a baseline torque versus engine speed curve. A torque sensor detects an engine torque of the engine. A data processor determines if the detected engine speed is within a first speed range and if the detected engine torque is within a first torque range. A motor controller activates an electric motor to rotate substantially synchronously with a corresponding engine speed associated with the detected engine torque in an electric propulsion mode in accordance with a supplemental torque versus engine speed curve if the detected engine speed is within the first speed range and if the detected engine torque is within the first torque range. The supplemental torque versus engine speed curve intercepts the baseline torque versus engine speed curve at a lower speed point and a higher speed point.
Abstract:
A vortex-type filter assembly comprising a housing, a removable inlet module, and a removable outlet module. The housing comprises an inlet portion, a filtration chamber, and an outlet portion. The inlet module separates the inlet portion from the filtration chamber, and has one or more vortex generating inlet passages. The outlet module separates the filtration chamber from the outlet portion, and has one or more outlet passages. There is one outlet passage cooperating with every one inlet passage for filtering debris from the fluid. One or both of inlet module and the outlet module may be removed to facilitate servicing of the filter assembly.
Abstract:
A method and system for boosting a torque output of a drive train comprises an engine speed detector for detecting an engine speed of an engine having a baseline torque versus engine speed curve. A data processor determines if the detected engine speed is within a first range of engine speeds, if the detected engine speed is within the first range, the electric motor is activated to rotate substantially synchronously with the engine speed within the first range in an electric propulsion mode in accordance with a supplemental torque versus engine speed curve. The supplemental torque versus engine speed curve intercepts the baseline torque versus engine speed curve at a lower engine speed point and a higher engine speed point.
Abstract:
An engine compartment arrangement for an agricultural harvester comprises an engine (10), a diesel particulate filter (12) coupled to the engine (10) to receive and filter hot exhaust gases therefrom, a fan (14), a radiator (16) disposed in a cooling airflow path in front of the fan (14) and coupled to the engine (10) to cool said engine (10), a cleaning air duct (18) having a first end (20) disposed immediately behind the fan (14) to receive a portion of the air ejected from the fan (14), and having a second end (22) disposed adjacent to the top of the diesel particulate filter (12) to exhaust a jet of the ejected air at a sufficient speed and in sufficient volume across the top surface (24) of the diesel particular filter (12) to prevent an accumulation of agricultural debris on top of the diesel particulate fitter 12).
Abstract:
A working vehicle, such as an agricultural combine, includes a vehicle body and an internal combustion engine carried by the vehicle body. The internal combustion engine includes a heat exchanger. An air scoop has an inlet positioned near a top of the vehicle body and facing in an upward direction, and an outlet positioned in association with the heat exchanger.
Abstract:
A method and system for boosting a torque output of a drive train comprises an engine speed detector for detecting an engine speed of an engine having a baseline torque versus engine speed curve. A data processor determines if the detected engine speed is within a first range of engine speeds, if the detected engine speed is within the first range, the electric motor is activated to rotate substantially synchronously with the engine speed within the first range in an electric propulsion mode in accordance with a supplemental torque versus engine speed curve. The supplemental torque versus engine speed curve intercepts the baseline torque versus engine speed curve at a lower engine speed point and a higher engine speed point.
Abstract:
An engine speed detector detects an engine speed of an engine having a baseline torque versus engine speed curve. A torque sensor detects an engine torque of the engine. A data processor determines if the detected engine speed is within a first speed range and if the detected engine torque is within a first torque range. A motor controller activates an electric motor to rotate substantially synchronously with a corresponding engine speed associated with the detected engine torque in an electric propulsion mode in accordance with a supplemental torque versus engine speed curve if the detected engine speed is within the first speed range and if the detected engine torque is within the first torque range. The supplemental torque versus engine speed curve intercepts the baseline torque versus engine speed curve at a lower speed point and a higher speed point.
Abstract:
A vehicle engine cooling system includes a primary cooling circuit having a primary radiator and a coolant pump. A secondary cooling circuit includes a secondary radiator, an EGR cooler, and a liquid/air charge air pre-cooler receiving engine inlet air from a turbocharger compressor. The coolant pump circulates coolant through the EGR cooler, through the charge air pre-cooler, and through the primary and secondary radiators. A fan blows cooling air through the primary and secondary radiators. The secondary radiator is downstream of the primary radiator in the fan airflow. The cooling system also includes an air-to-air charge air cooler which receives engine inlet air from the liquid/air charge air pre-cooler. The air-to-air charge air cooler is upstream of the primary radiator with respect to flow of cooling air. The cooling system also includes an auxiliary engine fluid cooler which is located between the air-to-air charge air cooler and the primary radiator.
Abstract:
An adjustment mechanism for providing fine adjustments of the relative position of the first wheel relative to the other wheel or wheels in a belted track system. The adjustment mechanism comprises a screw jack assembly that is mounted to the first and second flanges of a first longitudinal member and a second longitudinal member, respectively. After loosening the fastening bolts for the two flanges, the screw jack can be manipulated rotating the first longitudinal member relative to the second longitudinal member. After the correct adjustment position has been found, the fastening bolts can be retightened.