Abstract:
An embodiment of an electronic communications device, including: a body of semiconductor material defining at least one integrated electronic circuit and having a top surface; an electromagnetic shield; a radiant element; and a capacitive element formed by a first electrode and a second electrode, the radiant element being set on the top surface and being ohmically coupled to the first electrode and the second electrode by means of a first connection element and a second connection element, respectively, the electromagnetic shield being set between the radiant element and the top surface and forming at least the second electrode.
Abstract:
A method of electrical testing electronic devices DUT, comprising: connecting at least an electronic device DUT to an automatic testing apparatus suitable for performing the testing of digital circuits or memories or of digital circuits and memories; sending electrical testing command signals to the electronic device DUT by means of the ATE apparatus; performing electrical testing of the electronic device DUT by means of at least one advanced supervised self testing system “Advanced Low Pin Count BIST” ALB which is built in the electronic device DUT, the ALB system being digitally interfaced with the ATE through a dedicated digital communication channel; and sending reply messages, if any, which comprise measures, failure information and reply data to the command signals from the electronic device DUT toward the ATE apparatus by means of the digital communication channel.
Abstract:
A testing method is described of at least one device provided with an integrated testing circuit and in communication with at least one tester where messages/instructions/test signals/information are exclusively sent from the tester to the device. A testing architecture is also described for implementing this testing method.
Abstract:
An integrated circuit integrated on a semiconductor material die and adapted to be at least partly tested wirelessly, wherein circuitry for setting a selected radio communication frequencies to be used for the wireless test of the integrated circuit are integrated on the semiconductor material die.
Abstract:
A MEMS probe adapted to contact a corresponding terminal of an integrated circuit, integrated on at least one chip of a semiconductor material wafer during a test phase of the wafer is provided. The probe includes a support structure comprising a first access terminal and a second access terminal; the support structure defines a conductive path between said first access terminal and said second access terminal. The probes further-includes a probe region connected to the support structure adapted to contact the corresponding terminal of the integrated circuit during the test phase for providing at least one test signal received from the first access terminal and the second access terminal to the integrated circuit through at least one portion of the conductive path, and/or providing at least one test signal generated by the integrated circuit to at least one between the first access terminal and the second access terminal trough at least one portion of the conductive path. The probe region is arranged on the conductive path of the support structure between said first access terminal and said second access terminal.
Abstract:
An embodiment of a testing system for carrying out electrical testing of at least one first through via extending, at least in part, through a substrate of a first body of semiconductor material. The testing system has a first electrical test circuit integrated in the first body and electrically coupled to the first through via and to electrical-connection elements carried by the first body for electrical connection towards the outside; the first electrical test circuit enables detection of at least one electrical parameter of the first through via through the electrical-connection elements.
Abstract:
A testing apparatus includes a tester and a probe card system that includes a probe card connected to the tester, and an active interposer connected to the probe card and wirelessly coupled with a device to be tested. The active interposer includes pads positioned on its free surface facing the device. The pads are positioned with respect to pads of the device so that each pad of the active interposer faces a pad of the device and is separated therefrom by a dielectric. Each pair of facing pads forms an elementary wireless coupling element which allows a wireless transmission between the active interposer and the device. The active interposer also includes an amplifier circuit configured to amplify wireless signals from the device before forwarding them to the tester. The probe card system includes a transmission element able to transmit a power voltage from the tester to the device.
Abstract:
A method of testing integrated circuits is provided. The method includes establishing at least one first physical communication channel between a test equipment and a respective group of integrated circuits under test by having probes of the test equipment contacting at least one corresponding physical contact terminal of each integrated circuit of the respective group. The method further includes having the test equipment exchanging, over the at least one first physical communication channel, the same test stimuli with each integrated circuit of the group. The method still further includes having each integrated circuit of the group establishing a corresponding second physical communication channel with the test equipment by having at least one physical contact terminal of the integrated circuit contacted by a corresponding probe of the test equipment. The method further includes having each integrated circuit of the group exchanging, over the second physical communication channel, a corresponding test response signal based on the received test stimuli with the test equipment. The test stimuli are exchanged by modulating at least one first carrier wave based on the test stimuli; the at least one first carrier wave has at least one first frequency. The test response signals of each integrated circuit of the group are exchanged by modulating at least one respective second carrier wave based on the test response signals; each second carrier wave have at least one respective second frequency.
Abstract:
A testing method is described of at least one device provided with an integrated testing circuit and in communication with at least one tester where messages/instructions/test signals/information are exclusively sent from the tester to the device . A testing architecture is also described for implementing this testing method.
Abstract:
The disclosure relates to a process for making an electric testing of electronic devices DUT, of the type comprising the steps of: connecting at least one electronic device DUT to an automatic testing apparatus or ATE apparatus suitable for making the testing of digital circuits; sending, through said ATE apparatus, control signals for the electric testing to said electronic device DUT. Advantageously, the process also comprises the steps of: making the electric testing of said electronic device DUT through at least one reconfigurable digital interface RDI connected to said ATE apparatus through a dedicated digital communication channel and comprising a limited number of communication or connection lines strictly appointed to the exchange of the testing information; and sending from said electronic device DUT to said ATE apparatus response messages, if any, containing measures, failure information and data in response to said control signals and through said digital communication channel.