摘要:
A semiconductor structure and method of manufacturing the semiconductor structure, and more particularly to a semiconductor structure having reduced metal line resistance and a method of manufacturing the same in back end of line (BEOL) processes. The method includes forming a first trench extending to a lower metal layer Mx+1 and forming a second trench remote from the first trench. The method further includes filling the first trench and the second trench with conductive material. The conductive material in the second trench forms a vertical wiring line extending orthogonally and in electrical contact with an upper wiring layer and electrically isolated from lower metal layers including the lower metal layer Mx+1. The vertical wiring line decreases a resistance of a structure.
摘要:
A curable liquid formulation comprising: (i) one or more near-infrared absorbing polymethine dyes; (ii) one or more crosslinkable polymers; and (iii) one or more casting solvents. The invention is also directed to solid near-infrared absorbing films composed of crosslinked forms of the curable liquid formulation. The invention is also directed to a microelectronic substrate containing a coating of the solid near-infrared absorbing film as well as a method for patterning a photoresist layer coated on a microelectronic substrate in the case where the near-infrared absorbing film is between the microelectronic substrate and a photoresist film.
摘要:
A photoresist composition and methods using the photoresist composition in multiple exposure/multiple layer processes. The photoresist composition includes a polymer comprising repeat units having a hydroxyl moiety; a photoacid generator; and a solvent. The polymer when formed on a substrate is substantially insoluble to the solvent after heating to a temperature of about 150° C. or greater. One method includes forming a first photoresist layer on a substrate, patternwise exposing the first photoresist layer, forming a second non photoresist layer on the substrate and patterned first photoresist layer. Another method includes forming a first photoresist layer on a substrate, patternwise exposing the first photoresist layer, forming a second photoresist layer on the substrate and patterned first photoresist layer and patternwise exposing the second photoresist layer.
摘要:
A method forms a first patterned mask (comprising rectangular features and/or rounded openings) on a planar surface and forms a second patterned mask on the first patterned mask and the planar surface. The second patterned mask covers protected portions of the first patterned mask and the second patterned mask reveals exposed portions of the first patterned mask. The method treats the exposed portions of the first patterned mask with a chemical treatment that reduces the size of the exposed portions to create an altered first patterned mask.
摘要:
Methods are presented of forming sub-lithographic patterns using double exposure. One method may include providing a photoresist layer over a layer to be patterned; exposing the photoresist layer using a first mask having a first opening; developing the photoresist layer to transfer the first opening into the photoresist layer, forming a boundary in the photoresist layer about the transferred first opening that is hardened; exposing the photoresist layer using a second mask having a second opening that overlaps the boundary; and developing the photoresist layer to transfer the second opening into the photoresist layer, leaving the boundary, wherein the boundary has a sub-lithographic dimension.
摘要:
A resist polymer that has nano-scale patterns located therein that are in the form of sub lithographic hollow pores (or openings) that are oriented in a direction that is substantially perpendicular with that of its major surfaces (top and bottom) is provided. Such a resist polymer having the nano-scale patterns is used as an etch mask transferring nano-scale patterns to an underlying substrate such as, for example, dielectric material. After the transferring of the nano-scale patterns into the substrate, nano-scale voids (or openings) having a width of less than 50 nm are created in the substrate. The presence of the nano-scale voids in a dielectric material lowers the dielectric constant, k, of the original dielectric material. In accordance with an aspect of the present invention, the inventive resist polymer comprises a copolymer that includes a first monomer unit (A) that contains a Si-containing component, and a second monomer unit (B) that contains an organic component, wherein said two monomer units (A and B) have different etch rates.
摘要:
An electrically reprogrammable fuse comprising an interconnect disposed in a dielectric material, a sensing wire disposed at a first end of the interconnect, a first programming wire disposed at a second end of the interconnect, and a second programming wire disposed at a second end of the interconnect, wherein the fuse is operative to form a surface void at the interface between the interconnect and the sensing wire when a first directional electron current is applied from the first programming wire through the interconnect to the second programming wire, and wherein, the fuse is further operative to heal the surface void between the interconnect and the sensing wire when a second directional electron current is applied from the second programming wire through the interconnect to the first programming wire.
摘要:
A method for manufacturing a microelectronic circuit includes the steps of providing a first wiring level comprising first wiring level conductors separated by a first wiring level dielectric material; forming a plurality of alternating layers of layer dielectric material and sacrificial material over the first wiring level; and forming a plurality of interconnect openings and a plurality of gap openings in the alternating layers of layer dielectric material and sacrificial material. The interconnect openings are formed over the first wiring level conductors. The method further includes forming (i) metallic conductors comprising second wiring level conductors, and (ii) interconnects, at the interconnect openings; and removing the layers of the sacrificial material through the gap openings.
摘要:
Fully and uniformly silicided gate conductors are produced by deeply “perforating” silicide gate conductors with sub-lithographic, sub-critical dimension, nanometer-scale openings. A silicide-forming metal (e.g. cobalt, tungsten, etc.) is then deposited, polysilicon gates, covering them and filling the perforations. An anneal step converts the polysilicon to silicide. Because of the deep perforations, the surface area of polysilicon in contact with the silicide-forming metal is greatly increased over conventional silicidation techniques, causing the polysilicon gate to be fully converted to a uniform silicide composition. A self-assembling diblock copolymer is used to form a regular sub-lithographic nanometer-scale pattern that is used as an etching “template” for forming the perforations.
摘要:
A structure for reducing electromigration cracking and extrusion effects in semiconductor devices includes a first metal line formed in a first dielectric layer; a cap layer formed over the first metal line and first dielectric layer; a second dielectric layer formed over the cap layer; and a void formed in the second dielectric layer, stopping on the cap layer, wherein the void is located in a manner so as to isolate structural damage due to electromigration effects of the first metal line, the effects including one or more of extrusions of metal material from the first metal line and cracks from delamination of the cap layer with respect to the first dielectric layer.