Abstract:
Systems and methods for handling sudden power failures in non-volatile memory devices such as solid state drives are provided by having the non-volatile memory device boot up in a low power write mode, which limits substantially all programming operations to a single level cell (SLC) mode, as opposed to a normal mode in which the programming operations can be performed in a multi-level cell (MLC) mode. Thus, if the system experiences a sudden power failure when it is being powered solely by AC derived power and the battery is below a level sufficient for powering the device while it is programming in the SLC mode, data integrity will be preserved because the programming operation was being performed in SLC mode. The non-volatile memory device may be permitted to exit out the low power write mode into the normal mode when the charge level of the battery is sufficient for powering the system.
Abstract:
Systems and methods are disclosed for correcting block errors. In particular, a system can store a parity page per page-modulo, where a pre-determined number of pages of a block or a band of the NVM may be allocated as page-modulo XOR (“PMX”) parity pages. This enables a space efficient approach for recovering from single-block data errors.
Abstract:
Systems and methods are disclosed for correction of block errors for a system having non-volatile memory (“NVM”). In particular, the system can store a parity page per page-modulo, where a pre-determined number of pages of a block or a band of the NVM may be allocated as page-modulo XOR (“PMX”) parity pages. This can be a space efficient approach for recovering from single-block data errors such as, for example, single-page uncorrectable error-correcting codes (“uECCs”) and/or errors caused by word line shorts.
Abstract:
Systems and methods are disclosed for improving performance of a system having non-volatile memory (“NVM”). The system can vertically re-vector defective blocks of a user region of the NVM to other blocks having the same plane or die's plane (“DIP”) but corresponding to a dead region of the NVM. Then, the system can select any band with more than one defective block and vertically re-vector one of its defective blocks to a band that has no defective blocks. At run-time, the system can monitor the number of vertical re-vectors per DIP. If at least one vertical re-vector has been performed on all DIPs of the NVM, a band of the user region can be allocated for the dead region.
Abstract:
Systems and methods are disclosed for correction of block errors for a system having non-volatile memory (“NVM”). In particular, the system can store a parity page per page-modulo, where a pre-determined number of pages of a block or a band of the NVM may be allocated as page-modulo XOR (“PMX”) parity pages. This can be a space efficient approach for recovering from single-block data errors such as, for example, single-page uncorrectable error-correcting codes (“uECCs”) and/or errors caused by word line shorts.
Abstract:
Disclosed herein are techniques for managing context information for data stored within a non-volatile memory of a computing device. According to some embodiments, the method can include (1) loading, into a volatile memory of the computing device, the context information from the non-volatile memory, where the context information is separated into a plurality of silos, (2) writing transactions into a log stored within the non-volatile memory, and (3) each time a condition is satisfied: (i) identifying a next silo of the plurality of silos to be written into the non-volatile memory, (ii) updating the next silo to reflect the transactions that apply to the next silo, and (iii) writing the next silo into the non-volatile memory. In turn, when an inadvertent shutdown of the computing device occurs, the silos of which the context information is comprised can be sequentially accessed and restored in an efficient manner.
Abstract:
Systems and methods for managing non-volatile memory devices are provided. Embodiments discussed herein define a native logical space to manage relatively high volume data write operations and define an artificially limited logical space to manage relatively low volume data write operations. The native logical space may include native logical bands that are mapped to a native number of physical blocks to enable high volume, high data transfer of data. The artificially limited logical space may include artificially limited logical bands that are mapped to an artificially limited number of available physical blocks. The artificially limited logical bands are better suited for low volume, low data transfer of data and do not unnecessarily tie up a native number of physical blocks.
Abstract:
Systems and methods for balancing multiple partitions of non-volatile memory devices are provided. Embodiments discussed herein execute a balance proportion scheme in connection with a NVM that is partitioned to have multiple partition types. Each partition type has an associated endurance that defines an average number of program/erase (P/E) cycles it can endure before it reaches failure. For example, a first partition type may have a substantially greater endurance than a second partition type. The balance proportion scheme ensures that, even though each partition type has a different associated endurance, all partition types are used proportionally with respect to each other to balance their respective P/E cycles. This way, both partition types will reach the upper limits of their respective endurance levels out at approximately the same time.
Abstract:
Systems and methods for managing data in non-volatile memory devices across a large range of operating temperatures are provided. Embodiments discussed herein selectively reprogram previously programmed data at a temperature that better enables the data to be read regardless of where within the range of operating temperatures the data is being read. Circuitry and methods discussed herein can keep track of a program temperature associated with each portion of non-volatile memory and use this information along with other criteria to selectively perform temperature based moves of data. This enables a mechanism for data to programmed in out-of-bounds temperature ranges to be reprogrammed within an in-bounds temperatures range so that a temperature delta between the reprogrammed temperature and the read operation temperature is below a threshold that ensure efficient and error free read operations to be performed.
Abstract:
In one embodiment, input-output (I/O) scheduling system detects and resolves priority inversions by expediting previously dispatched requests to an I/O subsystem. In response to detecting the priority inversion, the system can transmit a command to expedite completion of the blocking I/O request. The pending request can be located within the I/O subsystem and expedited to reduce the pendency period of the request.