Abstract:
An interface emulator for an IC is disclosed. An interface emulator includes a first first-in, first-out memory (FIFO) and a second FIFO. The first FIFO is coupled to receive data from an access port and a second FIFO coupled to receive data from at least one functional unit in the IC. The access port may be coupled to a device that is external to the IC. The external device may write information into the first FIFO, and this information may subsequently be read by a functional unit in the IC. Similarly, the functional unit may write information into the second FIFO, with the external device subsequently reading the information. Information may be written into the FIFOs in accordance with a predefined protocol. Thus, a particular type of interface may be emulated even though the physical connection and supporting circuitry for that interface is not otherwise implemented in the IC.
Abstract:
An interface emulator for an IC is disclosed. An interface emulator includes a first first-in, first-out memory (FIFO) and a second FIFO. The first FIFO is coupled to receive data from an access port and a second FIFO coupled to receive data from at least one functional unit in the IC. The access port may be coupled to a device that is external to the IC. The external device may write information into the first FIFO, and this information may subsequently be read by a functional unit in the IC. Similarly, the functional unit may write information into the second FIFO, with the external device subsequently reading the information. Information may be written into the FIFOs in accordance with a predefined protocol. Thus, a particular type of interface may be emulated even though the physical connection and supporting circuitry for that interface is not otherwise implemented in the IC.
Abstract:
An interface emulator for an IC is disclosed. An interface emulator includes a first first-in, first-out memory (FIFO) and a second FIFO. The first FIFO is coupled to receive data from an access port and a second FIFO coupled to receive data from at least one functional unit in the IC. The access port may be coupled to a device that is external to the IC. The external device may write information into the first FIFO, and this information may subsequently be read by a functional unit in the IC. Similarly, the functional unit may write information into the second FIFO, with the external device subsequently reading the information. Information may be written into the FIFOs in accordance with a predefined protocol. Thus, a particular type of interface may be emulated even though the physical connection and supporting circuitry for that interface is not otherwise implemented in the IC.
Abstract:
In an embodiment, a power management unit (PMU) may automatically transition (in hardware) the performance states of one or more performance domains in a system. The target performance states to which the performance domains are to transition may be programmable in the PMU by software, and software may signal the PMU that a processor in the system is to enter the sleep state. The PMU may control the transition of the performance domains to the target performance states, and may cause the processor to enter the sleep state. In an embodiment, the PMU may be programmable with a second set of target performance states to which the performance domains are to transition when the processor exits the sleep state. The PMU may control the transition of the performance domains to the second targeted performance states and cause the processor to exit the sleep state.
Abstract:
Techniques are disclosed concerning secure access to data in a computing device. In one embodiment, a computing device includes a communication interface, a memory, a memory controller, and a security processor. The communication interface may communicate with a different computing device. The security processor may generate a host key in response to a successful authentication of the different computing device, and then encrypt a memory key using the host key. The security processor may also send the encrypted memory key to the memory controller, and send the host key to the different computing device. The host key may be included by the different computing device in a subsequent memory request to access data in the memory. The memory controller may, in response to the subsequent memory request, use the included host key to decrypt the encrypted memory key and use the decrypted memory key to access the data.
Abstract:
An interface emulator for an IC is disclosed. An interface emulator includes a first first-in, first-out memory (FIFO) and a second FIFO. The first FIFO is coupled to receive data from an access port and a second FIFO coupled to receive data from at least one functional unit in the IC. The access port may be coupled to a device that is external to the IC. The external device may write information into the first FIFO, and this information may subsequently be read by a functional unit in the IC. Similarly, the functional unit may write information into the second FIFO, with the external device subsequently reading the information. Information may be written into the FIFOs in accordance with a predefined protocol. Thus, a particular type of interface may be emulated even though the physical connection and supporting circuitry for that interface is not otherwise implemented in the IC.
Abstract:
In one embodiment, an interrupt controller may implement an interrupt distribution scheme for distributing interrupts among multiple processors. The scheme may take into account various processor state in determining which processor should receive a given interrupt. For example, the processor state may include whether or not the processor is in a sleep state, whether or not interrupts are enabled, whether or not the processor has responded to previous interrupts, etc. The interrupt controller may implement timeout mechanisms to detect that an interrupt is being delayed (e.g. after being offered to a processor). The interrupt may be re-evaluated at the expiration of a timeout, and potentially offered to another processor. The interrupt controller may be configured to automatically, and atomically, mask an interrupt in response to delivering an interrupt vector for the interrupt to a responding processor.
Abstract:
Techniques are disclosed relating to power management within an integrated circuits. In one embodiment an apparatus is disclosed that includes a circuit and a power management unit. The power management unit is configured to provide, based on a programmable setting, an indication of whether an attempted communication to the circuit is permitted to cause the circuit to exit from a power-managed state. In some embodiments, the apparatus includes a fabric configured to transmit the attempted communication to the circuit from a device. In such an embodiment, the circuit is configured to exit the power-managed state in response to receiving the attempted communication. The fabric is configured to determine whether to transmit the attempted communication based on the indication provided by the power management unit.
Abstract:
An SOC implements a security enclave processor (SEP). The SEP may include a processor and one or more security peripherals. The SEP may be isolated from the rest of the SOC (e.g. one or more central processing units (CPUs) in the SOC, or application processors (APs) in the SOC). Access to the SEP may be strictly controlled by hardware. For example, a mechanism in which the CPUs/APs can only access a mailbox location in the SEP is described. The CPU/AP may write a message to the mailbox, which the SEP may read and respond to. The SEP may include one or more of the following in some embodiments: secure key management using wrapping keys, SEP control of boot and/or power management, and separate trust zones in memory.
Abstract:
An apparatus includes a control circuit, configured to transition a plurality of power domains into selected performance states, and a set of state request registers. A state request register may include fields that are associated with respective power domains. The apparatus may further include circuit blocks configured to store respective state request values into respective state request registers. A given state request value may indicate a requested performance state for at least one of the power domains. In addition, a performance management circuit may be configured to select, using the associated fields in the registers, a particular performance state for at least one of the power domains. The performance management circuit may be further configured to determine a transition path to sequence to the selected performance state, and to cause the control circuit to transition to the selected performance state using the transition path.