Abstract:
The present disclosure provides a low temperature polycrystalline silicon field effect TFT array substrate and a method for producing the same and a display apparatus. The method: using a stepped photo resist process to form a polycrystalline silicon active layer and a lower polar plate of a polycrystalline silicon storage capacitor simultaneously on a substrate in one lithographic process; forming a gate insulation layer on the polycrystalline silicon active layer and the lower polar plate of the polycrystalline silicon storage capacitor; forming a metal layer on the gate insulation layer and etching the metal layer to form a gate electrode and gate lines connected with the gate electrode, a source electrode, a drain electrode and data lines connected with the source electrode and the drain electrode; forming a passivation layer, a photo resist layer and a pixel electrode layer in sequence and patterning the passivation layer, the photo resist layer and the pixel electrode layer to form patterns of an interlayer insulation layer via hole and a pixel electrode in one lithographic process; forming a pixel definition layer on the pixel electrode. The present disclosure may reduce times of lithographic processes for the low temperature polycrystalline silicon field effect TFT array substrate, improve the yield and reduce the costs.
Abstract:
A flexible array substrate, a manufacturing method thereof and a display device are provided. The flexible array substrate includes: a first flexible substrate with a first surface; a thin film transistor on the first surface; and a light-shielding layer between the first flexible substrate and the thin film transistor. An orthographic projection of the light-shielding layer on the first flexible substrate covers an orthographic projection of a channel region of the thin film transistor on the first flexible substrate.
Abstract:
The present disclosure provides a display panel and a mirror display apparatus. The display panel includes a base substrate, a pixel defining layer and a light adjusting layer. The pixel defining layer is disposed on the base substrate and defines a plurality of light-emitting areas. The light adjusting layer includes a first reflecting layer, which is disposed at a side of the pixel defining layer away from the base substrate and has first openings in areas corresponding to the light-emitting areas. The light adjusting layer is configured to block at least a part of light directed at adjacent light-emitting areas for each of the light-emitting areas.
Abstract:
A flexible display substrate for a foldable display apparatus, a method of manufacturing the flexible display substrate, and a foldable display apparatus are disclosed. The flexible display substrate includes: a first region corresponding to a non-foldable region of the foldable display apparatus; a second region corresponding to a foldable region of the foldable display apparatus; a plurality of first pixel units disposed in the first region, configured to display an image, and each including a polysilicon thin film transistor; and a plurality of second pixel units disposed in the second region, configured to display an image, and each including an organic thin film transistor.
Abstract:
A thin film transistor, a method for manufacturing the same and a display device are provided in the present disclosure. The thin film transistor includes an active layer, a first electrode and a second electrode, and a gate electrode. The active layer includes an active layer body and an electrode hole in a center of the active layer body. The gate electrode is insulated and spaced apart from the active layer body and is disposed to surround the electrode hole. The first electrode and the second electrode are insulated from each other, both coupled to the active layer body, and insulated and spaced apart from the gate electrode. At least a portion of an orthographic projection of the first electrode on the active layer is within the electrode hole. An orthographic projection of the second electrode on the active layer surrounds the active layer body.
Abstract:
Provided are a thin film transistor sensor and a manufacturing method thereof. The thin film transistor sensor includes a first substrate and a second substrate opposite to each other, the first substrate includes a first flexible base substrate and a first gate electrode disposed on the first flexible base substrate, and the second substrate includes a second flexible base substrate and a second gate electrode disposed on the second flexible base substrate; the second gate electrode is at least partially overlapped with and separated from the first gate electrode, and configured to be electrically connected to the first gate electrode after the thin film transistor sensor is applied with a voltage, such that the thin film transistor sensor is turned on.
Abstract:
The present disclosure discloses a piezoelectric sensor and a method for manufacturing the same to realize omni-directional pressure sensing. The piezoelectric sensor according to the present disclosure comprises a first electrode layer, a second electrode layer and a piezoelectric thin film layer between the first electrode layer and the second electrode layer, the piezoelectric sensor further comprising: a first functional module and a second functional module, both of which are connected to the second electrode layer, wherein the first functional module is configured to sense a pressure applied to the piezoelectric sensor in a first direction, and the second functional module is configured to sense a pressure applied to the piezoelectric sensor in a second direction, the first direction and the second direction are perpendicular to each other.
Abstract:
A method of manufacturing low temperature polysilicon is provided, comprising: depositing a buffer layer (20) on a base substrate (10); depositing an amorphous silicon layer (30) on the buffer layer; performing a heat treatment after forming the amorphous silicon layer; and dividing the amorphous silicon layer into a plurality of areas for laser annealing according to a thickness distribution of the amorphous silicon layer to form a polycrystalline silicon layer. A low temperature polysilicon film manufactured by the low temperature polysilicon manufacturing method and a thin film transistor having the film are also provided. The method realizes large grain size for polysilicons in each area of the amorphous silicon layer and a uniform distribution of polysilicon grain size across the entire substrate.
Abstract:
An embodiment of the present invention relates to a low temperature polysilicon thin film and a manufacturing method thereof. The manufacturing method comprises: forming a buffer layer on a substrate (S11); forming a seed layer comprising a plurality of uniformly distributed crystal nuclei on the buffer layer by using a patterning process (S12); forming an amorphous silicon layer on the seed layer (S13); and performing an excimer laser annealing process on the amorphous silicon layer (S14).
Abstract:
A pixel driving circuit is provided. The pixel driving circuit includes a light emission control circuit and a drive circuit. The light emission control circuit controls a potential of a control terminal of the drive circuit under the control of a coupled signal terminal, and the drive circuit drives a coupled light-emitting element to emit light based on the potential of the control terminal thereof. The drive circuit includes two drive transistors connected in parallel, and subthreshold swings of the two drive transistors are different.