Abstract:
An axle disconnect assembly for translating rotational torque between an output shaft and an axle shaft of a vehicle driveline; including: disconnect housing and a clutch supported therein. The clutch is disposed in selective torque translating relationship between the output shaft and the axle shaft, and is movable between: an engaged configuration wherein torque is translated between the output shaft and the axle shaft; and a disengaged configuration wherein torque is interrupted between the shafts. An electromagnetic actuator is provide and has a slider selectively movable between a first stable position and a second stable position. The actuator is disposed in force translating relationship with the clutch such that movement from one stable position to the other stable position causes corresponding movement of the clutch between the configurations so as to selectively translate rotational torque between the output shaft and the axle shaft.
Abstract:
A number of variations may include a product that may include a power transfer assembly. A gear train may have multiple gears and may provide a first stage gearing that may have a fixed gear ratio. At least one planetary gear set may provide a second stage gearing that may have multiple gear ratios. An electric machine may selectively provide input to the first stage gearing. A differential unit may selectively receive output from the planetary gear set. An engagement mechanism may selectively connect the differential unit with the second stage gearing in each of a high range mode and a low range mode.
Abstract:
A product may include a differential unit that may be engaged with first and second axle shafts that may be driven from a common gear. An electrical machine may be positioned on a first side of the differential unit. A first shaft may extend from the electrical machine and into the differential unit. A power transfer unit may be positioned on a second side of the differential unit opposite the first side. A second shaft may extend into each of the differential unit and the power transfer unit. The first and second shafts may be rotationally engageable through the power transfer unit.
Abstract:
A powertrain arrangement for a transverse mounted motor for an electric powered automotive passenger vehicle including opposing wheel shafts for powering two parallel mounted wheels, the shafts rotating about a first axis, the shafts having at least one end torsionally connected with a differential, an electrical rotor torsionally connected with the wheel shafts via a planetary gear train, an electrical stator surrounding the rotor, a casing supporting the rotor and the wheel shafts, the casing encompassing the stator, the casing having a floor forming a lubricant reservoir, and a baffle located in the lubricant reservoir. The baffle forming a wall with a portal allowing flow through the formed wall, and wherein an increase of fluid pressure throttles flow through the formed wall.
Abstract:
A power transmitting component having a first shaft and a pump. The first shaft has a longitudinal bore, a pump mount and a feed conduit. The pump mount has a circumferentially extending surface, a drive portion and a channel that extends circumferentially about the first shaft. The channel is disposed along a longitudinal axis of the first shaft between the drive portion and the circumferentially extending surface. The feed conduit intersects and fluidly couples the longitudinal bore and the channel. The pump has a pump housing, a first rotor and a pump outlet. The pump housing is mounted about the circumferentially extending surface and is disposed circumferentially about the channel. The first rotor is coupled to the drive portion for rotation therewith. The pump outlet is coupled in fluid communication with the channel.
Abstract:
A driveline comprising an electrical machine, a chain drive, a first planetary gear set, a second planetary gear set, a range selector, a differential, and an axle assembly, wherein the electrical machine is constructed and arranged to selectively transmit power to the differential through the chain drive, the first planetary gear set, the range selector, and the second planetary gear set or to selectively receive power through the chain drive, the first planetary gear set, the range selector, the second planetary gear set, and the differential, and wherein the range selector is configured to selectively shift the driveline into a high range, a low range, and a neutral mode.
Abstract:
A synchronizer is provided for torsionally connecting a gear to an axially aligned shaft. The synchronizer includes a hub connected with the shaft, a sleeve having an inner diameter with spline teeth for torsional connection with the hub being axially movable upon the hub, a blocking ring torsionally connected on the hub having an angular lost motion relationship with the sleeve, the blocking ring having at least a first annular conical friction surface orientated radially inward and axially toward the hub and a second annular conical friction surface oriented radially inward and axially outward from the hub, the blocking ring having blocking cogs preventing axial movement of the sleeve toward the gear when the gear is in a non-synchronous condition, and an engagement ring for fixed connection with the gear, the engagement ring having a complementary annular conical friction surfaces.
Abstract:
A transfer case for a motor vehicle. An input is rotatable about an axis to receive torque, an output is rotatable about the axis to transmit torque, and a planetary gear set is rotatable about the axis and operatively coupled between the input and the output. A shift sleeve circumscribes and is axially slidably carried along the axis, and a shift sleeve lock is automatically engageable with the shift sleeve responsive to the transfer case exceeding a predetermined rotational speed, to prevent axial movement of the shift sleeve above that speed. A related method is also provided.
Abstract:
A clutch assembly (10) and a method of assembly operable for transferring rotary power between a first shaft (12) and a second shaft (14) through a set of inner clutch plates (16) and a set of outer clutch plates (18) can include at least one of an outer plate separator (28) and an inner plate separator (30). The outer plate separator (28) can be biased radially inward toward the outer clutch plates (18) for axially separating each of the outer clutch plates (18) and moveable radially outward away from the outer clutch plates (18) by centrifugal force when the clutch assembly (10) is rotated above a predetermined rotational speed threshold. The inner plate separator (30) is biased radially outward for axially separating each of the inner clutch plates (16) and moveable radially inward away from the inner clutch plates (16) by axial movement of a hydraulically actuated wedge member (31) when the clutch assembly (10) is engaged.
Abstract:
An engine variable camshaft timing phaser (10) includes a sprocket (12) and a planetary gear assembly (14). The sprocket (12) receives rotational drive input from an engine crankshaft. The planetary gear assembly (14) includes two or more ring gears (26, 28), multiple planet gears (24), a sun gear (22), and a wrap spring (76). One of the ring gears (26, 28) receives rotational drive input from the sprocket (12) and one of the ring gears (26, 28) transmits rotational drive output to an engine camshaft. The sun gear (22) engages with the planet gears (24). The wrap spring (76) experiences expansion and contraction exertions to permit advancing and retarding engine valve opening and closing, and to prevent advancing and retarding engine valve opening and closing.