Abstract:
An ionization device includes an irradiation unit to irradiate at least a region of a surface of a sample with laser light to scatter particles contained on the surface of the sample, a liquid holding unit having a distal end to hold a liquid on an outer periphery of the distal end, an extract electrode to extract ionized ions, and a voltage application unit to apply a voltage between the liquid holding unit and the extract electrode to generate the ions from the liquid held on the outer periphery of the distal end. The region and the distal end are disposed so as not to make contact with each other but to be in close proximity to each other so that the liquid held on the outer periphery of the distal end attracts particles desorbed from the sample as a result of irradiation with the laser light.
Abstract:
Provided is an ionization apparatus including: a holder configured to hold a sample; a probe configured to determine a part to be ionized of the sample held by the holder; an extract electrode configured to extract ionized ions of the sample; a liquid supply unit configured to supply liquid to a part of a region of the sample; and a unit configured to apply a first voltage between the probe and the extract electrode, in which the first voltage is pulse-modulated.
Abstract:
A mass spectrometry apparatus includes a holding table that holds a specimen to be ionized, a probe that identifies a portion of the specimen to be ionized, an ion extraction electrode that extracts ions obtained by ionizing the specimen, a liquid supplying unit that supplies liquid to between the specimen and the probe to form a liquid bridge between the specimen and the probe, a vibrating unit that vibrates one of the probe and the holding table, an electric field generating unit that generates an electric field between the probe and the ion extraction electrode, a mass spectrometry unit that mass analyzes ions extracted by the ion extraction electrode, and a synchronization unit configured to synchronize a time at which ions are generated from the portion with a time at which the mass spectrometry unit measures the ions.
Abstract:
An optical measurement device includes a light source unit including a first laser light source configured to emit a laser beam having a first wavelength and a second laser light source configured to emit a laser beam having a second wavelength, a measurement wave number setting unit, and a light source adjustment unit configured to adjust at least one of the first wavelength and the second wavelength such that a difference between or a sum of a first wave number corresponding to the first wavelength and a second wave number corresponding to the second wavelength matches a measurement wave number set through the measurement wave number setting unit.
Abstract:
An ionization device includes: a holding portion configured to hold a sample; a probe configured to arrange a liquid on a surface of the sample to form a liquid bridge between the probe and the sample; an electrode configured to form, at the probe, a Taylor cone for ionizing a substance contained in the sample, and to release the ionized substance from the Taylor cone; a voltage applying unit configured to apply a voltage to the electrode; and a light source configured to emit laser light that irradiates the Taylor cone. A mass spectrometer including the ionization device, and an image display system including the mass spectrometer are also disclosed.
Abstract:
An ionization device includes a support configured to support a sample, a probe configured to determine a portion of the sample to be ionized, an irradiation unit configured to emit laser light and is disposed to irradiate with the laser light a liquid bridge portion between the sample and the probe, an extract electrode configured to extract ions obtained by ionizing the sample, a liquid supply unit configured to supply a liquid to a region of the sample, and voltage application units configured to generate an electric field between a portion of the probe that is in contact with the liquid bridge portion and the extract electrode.
Abstract:
A mass spectrometry apparatus includes a holding table that holds a specimen to be ionized, a probe that identifies a portion of the specimen to be ionized, an ion extraction electrode that extracts ions obtained by ionizing the specimen, a liquid supplying unit that supplies liquid to between the specimen and the probe to form a liquid bridge between the specimen and the probe, a vibrating unit that vibrates one of the probe and the holding table, an electric field generating unit that generates an electric field between the probe and the ion extraction electrode, a mass spectrometry unit that mass analyzes ions extracted by the ion extraction electrode, and a synchronization unit configured to synchronize a time at which ions are generated from the portion with a time at which the mass spectrometry unit measures the ions.
Abstract:
Provided is an ionization apparatus including: a holder configured to hold a sample; a probe configured to determine a part to be ionized of the sample held by the holder; an extract electrode configured to extract ionized ions of the sample; a liquid supply unit configured to supply liquid to a part of a region of the sample; and a unit configured to apply a first voltage between the probe and the extract electrode, in which the first voltage is pulse-modulated.
Abstract:
The present invention has an object to achieve soft ionization more easily when a slight amount of substance is ionized under an atmosphere pressure. The present invention provides an ionization method for a substance contained in a liquid, including: supplying the liquid to a substrate from a probe and forming a liquid bridge made of the liquid containing the substance dissolved therein, between the probe and the substrate; oscillating the substrate; and generating an electric field between an electrically conductive portion of the probe in contact with the liquid and an ion extraction electrode.
Abstract:
A laser scanning microscope apparatus includes an irradiation unit including an objective lens, a photodetector unit, an XY-scanning unit, and a Z-scanning unit. The irradiation unit focuses a laser beam with the objective lens to a specimen. The photodetector unit detects light generated from a position irradiated with the laser beam focused. The XY-scanning unit scans the laser beam in an X-direction perpendicular to an optical axis of the objective lens and in a Y-direction perpendicular to the optical axis and the X-direction. The Z-scanning unit scans the laser beam in a Z-direction parallel to the optical axis. When acquiring XY-two-dimensional image data by detecting the light while scanning the irradiated position in the X-direction and the Y-direction, the apparatus detects the light while scanning the irradiated position also in the Z-direction.