Abstract:
Certain aspects involve power management subsystems for a distributed antenna system (“DAS”) or other telecommunication system. The power management subsystem can include a measurement module and an optimization module. The measurement module can monitor a utilization metric for a remote unit in the DAS or other telecommunication system. The power optimization module can determine whether the remote unit is underutilized based on the monitored utilization metric. The power optimization module can configure the remote unit for a low-power operation in response to determining that the remote unit is underutilized.
Abstract:
A distributed antenna system is provided for communicating with a plurality of base stations. The distributed antenna system includes a system controller and a master unit communicating with at least one of the plurality of base stations. A remote unit communicates over a high data rate media with the master unit and/or a downstream remote unit. Alternatively, the distributed antenna system includes a controller and a digital time/space crosspoint switch controlled by the controller. A digitizing transceiver is in communication with the digital time/space crosspoint switch. The crosspoint switch is configured to transmit and receive digital data through the digitizing transceiver.
Abstract:
A telecommunications system is provided that can re-sample a digitized signal at a resample rate that is based on one or more factors to better utilize bandwidth. The factors can include the bandwidth of the signal that the digitized signal represents, the amount of bandwidth owned or used by the carrier, the full bandwidth of the designated RF band, the bandwidth of the serial link, the frame length of the serial link, the segmentation of the frames on the serial link, and the capability of the equipment at the receiving end of a serial link. The re-sampled signal can be transmitted to another unit that is remote to the unit transmitting the signal. The other unit can include a re-sampling device that restores the re-sampled signal to a digital signal that can be converted to an analog signal for wireless transmission.
Abstract:
Certain aspects involve a wideband remote unit. The wideband remote unit can include one or more antennas and an analog-to-digital converter (“ADC”). The antenna can receive wideband signals. The wideband signals can include an uplink RF signal and a leaked downlink RF signal. The uplink RF signal can have an uplink signal power at or near a noise level. The leaked downlink RF signal can have a downlink signal power greater than the uplink signal power. The ADC can convert the received wideband signals to digital RF signals representing the uplink signal and the downlink signal. The wideband remote unit can transmit the digital RF signals to a unit of a DAS that is in communication with a base station.
Abstract:
A telecommunications system is provided that can re-sample a digitized signal at a resample rate that is based on one or more factors to better utilize bandwidth. The factors can include the bandwidth of the signal that the digitized signal represents, the amount of bandwidth owned or used by the carrier, the full bandwidth of the designated RF band, the bandwidth of the serial link, the frame length of the serial link, the segmentation of the frames on the serial link, and the capability of the equipment at the receiving end of a serial link. The re-sampled signal can be transmitted to another unit that is remote to the unit transmitting the signal. The other unit can include a re-sampling device that restores the re-sampled signal to a digital signal that can be converted to an analog signal for wireless transmission.
Abstract:
A frequency offset device can be located at a remote unit of a distributed antenna system and can be configured to combine two or more RF bands to allow the remote unit to process signals otherwise associated with a total RF bandwidth beyond the capabilities of the remote unit to process simultaneously. Signals of the RF bands are received at the unit. At least one of the RF bands is shifted to form a composite RF band that has an edge of a first RF band overlapping an edge of a second RF band. The composite RF band includes information from the signals of the first RF band and from the signals of the second RF band. The remote unit can process the composite RF band.
Abstract:
A radio communication system includes at least one receive antenna for receiving communication signals, processing circuitry for processing the received communication signals and repeating the signals for further transmission, and at least one transmit antenna for transmitting the repeated signals. The processing circuitry is operable for receiving an input regarding the current geographic location of the communication system. The processing circuitry is further capable of recording measurements and data regarding the operation and use of the radio communication system and its operating environment including where and when the measurements and data were taken. The processing circuitry further provides a user interface and capabilities to analyze and visualize the recorded information to diagnose problems and optimize performance. Additionally, the recorded information can be transmitted to a remote server where can be used to determine optimal operational settings for other radio communication systems when they are operating in the same location where the measurements were taken, and these operational settings can be transmitted to these other radio communications systems prior to their use in these locations.
Abstract:
A signal repeating system for a wireless network includes signal repeating circuitry defining an uplink path for processing signals repeated between endpoints. The signal repeating circuitry includes circuitry for selectively varying at least one parameter of the signals that are processed in the uplink path. Circuitry evaluates how signals received in the uplink path of the signal repeating system respond to the variation of the signal parameter. Processing circuitry is configured for comparing a signal associated with the variation of the signal parameter with the evaluated response to determine if the variation causes a change in the uplink path signal response for detecting traffic in the uplink path.
Abstract:
An endpoint element of a distributed antenna system includes processing circuitry configured for processing a plurality of digital signals for conditioning the signals and compression circuitry configured for compressing at least one of the digital signals according to a compression scheme to yield at least one compressed digital signal and compression settings. The digital signals are combined into a single digital stream and combined and time division multiplexed onto a serial data link with the compression settings. The digital signals are also transmitted with compression settings to another endpoint element over the serial data link.
Abstract:
One embodiment is directed to a system to provide wireless coverage for a plurality of cells. The system comprises a virtualized headend and a plurality of remote units. The system is configured to operate as a distributed antenna system (DAS) when serving at least one of the cells. The plurality of remote units is configured to communicate with the virtualized headend using a switched Ethernet network. The virtualized headend is configured to communicate downlink user-plane data including frequency-domain IQ data and downlink control-plane data for a first cell served by at least one open radio access network (O-RAN) distributed unit (DU) to at least some of the remote units used to serve the first cell. At least some physical layer baseband processing for a wireless interface used to serve the first cell is performed by the virtualized headend or the remote units used to serve the first cell.