Abstract:
A linear solid state lighting fixture with asymmetric distribution. The fixture comprises an elongated back reflector along the longitudinal direction of the fixture. At least one light source is arranged to emit toward the back reflector. The source(s) are mounted to a heat sink structure such that at least a portion of light emitted from the source(s) first impinges on the back reflector which redirects at least a portion of the light toward an exit lens. The exit lens interacts with the light as it is emitted from the fixture. Both the shape of the individual fixture elements (e.g., the back reflector and the exit lens) and the arrangement of these elements provide an asymmetrical light output distribution. Various mount mechanisms may be used to attach the fixture to a surface such as a ceiling or a wall, or the fixture may be suspended from a in a pendant configuration.
Abstract:
A modular troffer-style fixture that is well-suited for use with solid state light sources, such as LEDs, to provide a surface ambient light (SAL). The fixture comprises two structural components: a housing subassembly and a lighting subassembly. These two subassemblies may be removably attached to operate as a singular fixture. Many different lighting subassemblies may be compatible with a single housing subassembly and vice versa. The housing subassembly comprises a body that is mountable to an external structure. The lighting subassembly comprises the light sources and optical elements that tailor the light to achieve a particular profile. Electronics necessary to power and control the light sources may be disposed in the housing subassembly, the lighting subassembly, or both. Various mount mechanisms may be used to attach the fixture to a surface such as a ceiling or a wall. Multiple fixtures can be connected serially to provide an extended continuous fixture.
Abstract:
Fixtures, apparatuses, and related methods are provided that provide for a non-Edison connection for receiving a lamp housing of a lighting device having a non-Edison connector. The fixture can include a fixture housing and a non-Edison socket securable to the fixture housing. The fixture can also include an engagement device for engaging a lamp housing of a lighting device that has a non-Edison connector upon insertion of the lamp housing into the fixture housing and engaging the non-Edison socket.
Abstract:
A modular troffer-style fixture that is well-suited for use with solid state light sources, such as LEDs, to provide a surface ambient light (SAL). The fixture comprises two structural components: a housing subassembly and a lighting subassembly. These two subassemblies may be removably attached to operate as a singular fixture. Many different lighting subassemblies may be compatible with a single housing subassembly and vice versa. The housing subassembly comprises a body that is mountable to an external structure. The lighting subassembly comprises the light sources and optical elements that tailor the light to achieve a particular profile. Electronics necessary to power and control the light sources may be disposed in the housing subassembly, the lighting subassembly, or both. Various mount mechanisms may be used to attach the fixture to a surface such as a ceiling or a wall. Multiple fixtures can be connected serially to provide an extended continuous fixture.
Abstract:
A luminaire for use in lighting a large open space such as a parking lot or deck of a parking garage includes a plurality of optical waveguides disposed in side-by-side relationship and together defining a closed path and at least one LED associated with each optical waveguide and disposed at a first end of the associated optical waveguide.
Abstract:
Fixtures, apparatuses, and related methods are provided that provide for a non-Edison connection for receiving a lamp housing of a lighting device having a non-Edison connector. The fixture can include a fixture housing and a non-Edison socket securable to the fixture housing. The fixture can also include an engagement device for engaging a lamp housing of a lighting device that has a non-Edison connector upon insertion of the lamp housing into the fixture housing and engaging the non-Edison socket.
Abstract:
A luminaire for use in lighting a large open space such as a parking lot or deck of a parking garage includes a plurality of optical waveguides disposed in side-by-side relationship and together defining a closed path and at least one LED associated with each optical waveguide and disposed at a first end of the associated optical waveguide.
Abstract:
A luminaire with a plurality of optical waveguides disposed in side-by-side relationship, together at least partially defining a closed path, and a plurality of optical coupling portions disposed adjacent to the optical waveguides. Further, each optical coupling portion is associated with one of the optical waveguides, and each coupling portion includes a refractive portion and a pair of reflective portions disposed on opposite sides of the refractive portion. Additionally, at least one LED is associated with each optical coupling portion and disposed at a first end of the associated optical coupling portion.
Abstract:
The present disclosure relates to determining one or more of a space occupancy score, space energy score, and space efficiency score for a collection of lighting endpoints in a lighting network. The space occupancy score is indicative of how effective the occupancy groups are configured for a given space or the utilization level for a space. The space energy score is indicative of how much energy the collection of lighting endpoints use or will likely use based on their configurations, actual use, or a combination thereof. The space efficiency score is indicative of the overall efficiency associated with the collection of lighting endpoints based on both occupancy and energy related metrics.
Abstract:
A luminaire for use in lighting a large open space such as a parking lot or deck of a parking garage includes a plurality of optical waveguides disposed in side-by-side relationship and together defining a closed path and at least one LED associated with each optical waveguide and disposed at a first end of the associated optical waveguide.