Abstract:
A process for the production of metal nanoparticles. Nanoparticles are formed by combining a metal compound with a solution that comprises a polyol and a substance that is capable of being adsorbed on the nanoparticles. The nanoparticles are precipitated by adding a nanoparticle-precipitating liquid in a sufficient amount to precipitate at least a substantial portion of the nanoparticles and of a protic solvent in a sufficient amount to improve the separation of the nanoparticles from the liquid phase.
Abstract:
A system and process for manufacturing custom printed circuit boards on pre-provided substrates, wherein the substrate is pre-provided with standard integrated circuits. The standard integrated circuits are pre-provided on the substrate in a conventional manner, such as by standard integrated circuit technologies, in many different packing technologies. The user designs the custom printed circuit board using a design tool to perform one or more specific electronic functions, based on the pre-provided electronic devices, and/or custom designed and direct printed electronic devices. The electronic devices includes transistors, resistors, capacitors, among other types of devices. The system and process allows users to customize standard “generic” circuit boards with some known electronic functions for their own particular application. Examples of such uses include displays, the automotive industry and many others.
Abstract:
A process of fabricating a passive electrical component, such as a resistor, a capacitor, or an inductor, is provided. The process includes the step of ink-jet printing at least one electronic ink onto a substrate in a predetermined pattern. The step of ink-jet printing may include the steps of: a) selecting at least one electronic ink having at least one electrical characteristic when cured; b) determining a positional layout for a plurality of droplets of the at least one electronic ink such that, when the at least one electronic ink has been cured, the positional layout provides a desired response for the electrical component; c) printing each of the plurality of droplets of the at least one electronic ink onto the substrate according to the positional layout using an ink-jet printing process; and d) curing the at least one electronic ink.
Abstract:
An apparatus and method for making a printed circuit board comprising a substrate and an electrical circuit is provided. The circuit is formed by deposition of a plurality of electronic inks onto the substrate and curing of each of the electronic inks. The deposition may be performed using an ink-jet printing process. The inkjet printing process may include the step of printing a plurality of layers, wherein a first layer includes at least one electronic ink deposited directly onto the substrate, and wherein each subsequent layer includes at least one electronic ink deposited on top of at least a portion of a previous layer when the previous layer has been cured. One or more of the layers may include at least two of the electronic inks.
Abstract:
A system and process for compensating for non-uniform surfaces of a substrate when direct printing traces is provided. The system and process provided herein measures the surface of a substrate and can determine whether the surface is substantially flat, rises or falls, or whether a mesa or valley is encountered. Depending on the surface feature (i.e., mesa, valley, falling or rising surface), the direct printing system can change the frequency of the printing timing signal, advance or retard the print timing signal, advance or retard the print data, or make repeated passes over certain areas. In addition, the process disclosed herein can determine whether two, three or all of the aforementioned steps for compensating for non-uniform substrates should be combined to most effectively and efficiently print on the non-uniform surface of the substrate as intended.
Abstract:
Processes for forming polyimide coatings during the formation of printed electronic features. In various embodiments, the processes include the steps of: (a) applying a polyimide precursor ink comprising a polyimide precursor onto a substrate or to an electronic feature disposed thereon, preferably through a direct write printing process, e.g., ink-jet printing, (b) converting the polyimide precursor to a polyimide coating; and (c) optionally forming an electronic feature on the polyimide coating.
Abstract:
The invention is to printed resistors and processes for forming same. The resistors comprise a conductive phase, preferably comprising conductive nanoparticles, and a resistive phase. In the processes of the invention, a resistor may be formed from a single ink or a plurality of inks. In the single ink embodiment, an ink is deposited which comprises a conductive phase precursor, a resistive phase precursor and a vehicle. The vehicle in removed and the conductive and resistive phase precursors are converted to a conductive phase and a resistive phase, respectively. In the multiple ink embodiment, a first ink comprising the conductive phase precursor and a first vehicle and a second ink comprising the resistive phase precursor and a second vehicle are deposited on the substrate. The vehicles are removed and the conductive and resistive phase precursors are converted to a conductive phase and a resistive phase, respectively.
Abstract:
A system and process for compensating for non-uniform surfaces of a substrate when direct printing traces is provided. The system and process provided herein measures the surface of a substrate and can determine whether the surface is substantially flat, rises or falls, or whether a mesa or valley is encountered. Depending on the surface feature (i.e., mesa, valley, falling or rising surface), the direct printing system can change the frequency of the printing timing signal, advance or retard the print timing signal, advance or retard the print data, or make repeated passes over certain areas. In addition, the process disclosed herein can determine whether two, three or all of the aforementioned steps for compensating for non-uniform substrates should be combined to most effectively and efficiently print on the non-uniform surface of the substrate as intended.
Abstract:
A process for the production of metal nanoparticles. The process comprises a rapid mixing of a solution of at least about 0.1 mole of a metal compound that is capable of being reduced to a metal by a polyol with a heated solution of a polyol and a substance that is capable of being adsorbed on the nanoparticles.
Abstract:
An apparatus and a method for manufacturing electrical and optical materials by ink-jet printing of electronic ink(s) onto a flexible substrate are provided. The apparatus includes a flexible substrate, a first roll and a second roll, a printing head for depositing a electronic ink onto the substrate according to a predetermined pattern, and a drying station for drying an amount of deposited electronic ink. Each roll is reversibly configured for feed or takeup of the substrate. When dry, the deposited electronic ink forms one of an electronic material, an optical material, a display, and a fuel cell electrode. The apparatus may also include a second printing head configured for depositing a second electronic ink onto the substrate after the first ink has dried. The apparatus may be configured to rewind the substrate prior to deposition of the second ink, or to reverse the feed/takeup direction of the rolls.