Abstract:
An energy-efficient consumer device audio power output stage with gain control provides improved battery life and reduced power dissipation without clipping the audio output signal. A power supply having a selectable operating mode supplies the power supply rails to the power amplified output stage. The operating mode is controlled in conformity with an input audio signal level, which may be determined from a volume control setting of the device and/or from a signal level detector that determines the amplitude of the signal being amplified. The gain applied to the audio input signal is reduced for a predetermined time period when a higher output voltage of the power supply is selected, to avoid clipping the audio output signal.
Abstract:
In accordance with systems and methods of the present disclosure, an audio device may include an electrical terminal, an audio circuit, and a transducer load detection circuit. The electrical terminal may couple a transducer device to the audio device. The audio circuit may generate an analog audio signal, wherein the analog audio signal is coupled to the electrical terminal The transducer load detection circuit may detect a load impedance of the transducer device when the transducer device is coupled to the audio device from characteristics measured at the electrical terminal.
Abstract:
An audio playback path of an audio apparatus includes a digital modulator, a digital-to-analog converter (DAC), and a power amplifier. The digital modulator receives a playback signal corresponding to playback audio content and generates a digital input signal in accordance with the playback signal. The DAC receives the audio input signal and generates an analog preamplifier signal. The power amplifier generates an audio output signal in accordance with the preamplifier signal and an analog attenuation determined by the analog attenuation signal. The apparatus may include a volume control input to receive a volume control signal and a playback controller configured to perform operations including generating an analog attenuation signal in accordance with the volume control signal, monitoring a playback state indicated by the playback parameters, and responsive to detecting the playback state satisfying the playback criterion, modifying a selected playback parameter to improve a performance parameter of the playback path.
Abstract:
Kickback current from a charge pump to a power management integrated circuit (PMIC) may be reduced by dissipating charge from fly and hold capacitors during mode transitions. A switch may be placed in series between the charge pump and the PMIC to disconnect the charge pump and prevent kickback current from reaching the PMIC. Further, additional loads, as switches, may be coupled to the charge pump outputs to dissipate charge from the fly and hold capacitors. Additionally, a closed feedback loop may be used to monitor and discharge excess charge from the fly and hold capacitors during mode transitions. Furthermore, charge may be redistributed between the fly and hold capacitors during mode transitions to reduce the time period of the transition.
Abstract:
Noise may be reduced by delaying signal propagation outside of a time window when a change in another signal is expected. A time window may be defined between the change of the first clock signal and the change of the second clock signal during which a third signal, such as a data signal, does not propagate through the circuit. When a change occurs in a third signal after the first clock signal change while the first clock signal is at a different level than a second clock signal, propagation of the third signal change may be delayed until a change in the second clock signal is received. Delayed propagation may be achieved through a latch and hold circuit with no metastability.
Abstract:
Kickback current from a charge pump to a power management integrated circuit (PMIC) may be reduced by dissipating charge from fly and hold capacitors during mode transitions. A switch may be placed in series between the charge pump and the PMIC to disconnect the charge pump and prevent kickback current from reaching the PMIC. Further, additional loads, as switches, may be coupled to the charge pump outputs to dissipate charge from the fly and hold capacitors. Additionally, a closed feedback loop may be used to monitor and discharge excess charge from the fly and hold capacitors during mode transitions. Furthermore, charge may be redistributed between the fly and hold capacitors during mode transitions to reduce the time period of the transition.
Abstract:
Noise may be reduced by delaying signal propagation outside of a time window when a change in another signal is expected. A time window may be defined between the change of the first clock signal and the change of the second clock signal during which a third signal, such as a data signal, does not propagate through the circuit. When a change occurs in a third signal after the first clock signal change while the first clock signal is at a different level than a second clock signal, propagation of the third signal change may be delayed until a change in the second clock signal is received. Delayed propagation may be achieved through a latch and hold circuit with no metastability.