Abstract:
A PM sensor is arranged downstream of a one-side blocked filter that collects a particulate matter in exhaust gas of an engine, and first and second sensor abnormality diagnoses are executed based on output of the PM sensor. In the first sensor abnormality diagnosis, a filter-outflow PM amount (an amount of the PM flowing out from the one-side blocked filter) is estimated based on a working condition of the engine and a PM collection rate of the one-side blocked filter, and an occurrence of output abnormality of the PM sensor is determined by comparing a sensor-detection PM amount (an amount of the PM detected based on the output of the PM sensor) with the filter-outflow PM amount. In the second sensor abnormality diagnosis, an engine discharging PM amount (an amount of the PM discharged from the engine) is estimated based on a working condition of the engine, and an occurrence of output abnormality of the PM sensor is determined by comparing an increasing rate of the output of the PM sensor with an increasing rate of the engine discharging PM amount.
Abstract:
An exhaust purification apparatus for an internal combustion engine has an exhaust purification catalytic agent disposed in an exhaust passage. The exhaust purification apparatus for the internal combustion engine has an exhaust throttle valve, an actuator, and a controller. The exhaust throttle valve is arranged upstream of the exhaust purification catalytic agent in the exhaust passage and changes a passage sectional area of the exhaust passage. The actuator operates the exhaust throttle valve to be open and closed. The controller controls the exhaust throttle valve to be open and closed through the actuator. The controller decreases an opening degree of the exhaust throttle valve to narrow the passage sectional area of the exhaust passage upon a heating request for heating the exhaust purification catalytic agent.
Abstract:
An O2 sensor has a sensor element, which includes a solid electrolyte layer and a pair of electrodes, while the solid electrolyte layer is interposed between the electrodes. The O2 sensor outputs an electromotive force signal in response to an air-to-fuel ratio of exhaust gas of an engine, which serves as a sensing subject. A constant current circuit, which induces a flow of a predetermined constant electric current between the pair of electrodes of a sensor element, and a current sensing arrangement, which senses a current value of an actual electric current that is conducted through the sensor element, are provided. A microcomputer determines whether an abnormality of the constant current circuit is present based on the current value of the electric current, which is sensed with the current sensing arrangement, in a case where the constant current is induced by the constant current circuit.
Abstract:
A catalytic conversion characteristic of a catalyst, which indicates a relationship between an air-to-fuel ratio and a catalytic conversion efficiency of the catalyst, includes a second air-to-fuel ratio point, which is a point of starting an outflow of NOx from the catalyst and is located on a rich side of a first air-to-fuel ratio point that forms an equilibrium point for a rich component and oxygen. A constant current circuit, which induces a flow of an electric current from an exhaust side electrode to an atmosphere side electrode through a solid electrolyte layer in a sensor element, is connected to the sensor element. A microcomputer controls a current value of the electric current, which is induced by the constant current circuit, based on a difference between the first air-to-fuel ratio point and the second air-to-fuel ratio point at the catalyst.
Abstract:
A deterioration diagnosis device, which performs a deterioration diagnosis of a catalyst, includes an exhaust-gas sensor provided downstream of the catalyst in a flow direction of exhaust gas such that an output value of the exhaust-gas sensor is used at least in the deterioration diagnosis. The deterioration diagnosis device further includes the constant current supply portion which applies a voltage to a sensor element of the exhaust-gas sensor to change an output characteristic of the exhaust-gas sensor, a response-time detection portion which detects a response time required for the output value of the exhaust-gas sensor to change from a rich threshold to a lean threshold, a response-time correction portion which controls the constant current supply portion to change the output characteristic of the exhaust-gas sensor so as to shorten the response time when the response time is longer than a predetermined reference time.
Abstract:
A technique controls a flight vehicle. In the technique, an operating mode for controlling the flight vehicle is set to one of normal modes when no abnormality has occurred in the flight vehicle. The operating mode is changed to one of fail-safe modes causing the flight vehicle to perform landing depending on current one of the normal modes when an abnormality has occurred in the flight vehicle.
Abstract:
A particulate matter detection system detects a particulate matter in exhaust gas. The particulate matter detection system includes: a particulate matter detection sensor in which at least one detection portion is provided, the at least one detection portion including at least one pair of multiple electrodes and a deposition surface which is interposed between the pair of electrodes and which the particulate matter is deposited on; a capacitor connected to the at least one detection portion in series; a power supply configured to apply a direct voltage to a series body including the at least one detection portion and the capacitor; and a voltage measurement portion configured to measure a voltage of the capacitor.
Abstract:
An exhaust gas purification device includes: an actual pressure difference obtainer that acquires an actual pressure difference which is an actual measurement value of a pressure difference of a filter; a flow rate obtainer that acquires a flow rate of exhaust gas flowing into the filter; a calculation pressure difference calculator that calculates a calculation pressure difference which is a calculated value of the pressure difference of the filter in a normal state when the exhaust gas flows into the filter with the flow rate acquired by the flow rate obtainer; and an abnormality determiner that performs an abnormality determination of the filter based on a pressure difference variation ratio which is a ratio between a variation in the actual pressure difference and a variation in the calculation pressure difference in response to a variation in the flow rate of the exhaust gas.
Abstract:
An abnormality diagnosis device includes a partially-plugged filter, a pressure difference sensor, a PM sensor, a first estimation portion estimating a diagnosis amount of PM from the partially-plugged filter, according to a running condition of the internal combustion engine, a second estimation portion estimating the diagnosis amount of PM according to an output of the pressure difference sensor, a third estimation portion estimating the diagnosis amount of PM according to an output of the PM sensor, and an abnormality diagnosis portion distinctly determining an abnormality of the internal combustion engine, an abnormality of the partially-plugged filter, and an abnormality of the PM sensor by comparing the diagnosis amount of PM estimated by the first estimation portion, the diagnosis amount of PM estimated by the second estimation portion, and the diagnosis amount of PM estimated by the third estimation portion.
Abstract:
A catalytic conversion characteristic of a catalyst, which indicates a relationship between an air-to-fuel ratio and a catalytic conversion efficiency of the catalyst, includes a second air-to-fuel ratio point, which is a point of starting an outflow of NOx from the catalyst and is located on a rich side of a first air-to-fuel ratio point that forms an equilibrium point for a rich component and oxygen. A constant current circuit, which induces a flow of an electric current from an exhaust side electrode to an atmosphere side electrode through a solid electrolyte layer in a sensor element, is connected to the sensor element. A microcomputer controls a current value of the electric current, which is induced by the constant current circuit, based on a difference between the first air-to-fuel ratio point and the second air-to-fuel ratio point at the catalyst.