Abstract:
This disclosure relates to the field of molecules having pesticidal utility against pests in Phyla Arthropoda, Mollusca, and Nematoda, processes to produce such molecules, intermediates used in such processes, pesticidal compositions containing such molecules, and processes of using such pesticidal compositions against such pests. These pesticidal compositions may be used, for example, as acaricides, insecticides, miticides, molluscicides, and nematicides. This document discloses molecules having the following formula (“Formula One”).
Abstract:
A fungicidal 4-methoxy-3-acetyloxypicolinamide may be conveniently prepared in processes that include the coupling together of 4-methoxy-3-acetyloxypicolinic acid or 4-methoxy-3-hydroxypicolinic acid with a key 2-aminopropanoate ester derived from a 1,1-bis(4-fluorophenyl)propane-1,2-diol.
Abstract:
A fungicidal 4-methoxy-3-acetyloxypicolinamide may be conveniently prepared in processes that include the coupling together of 4-methoxy-3-acetyloxypicolinic acid or 4-methoxy-3-hydroxypicolinic acid with a key 2-aminopropanoate ester derived from a 1,1-bis(4-fluorophenyl)propane-1,2-diol.
Abstract:
This disclosure relates to the field of molecules having pesticidal utility against pests in Phyla Arthropoda, Mollusca, and Nematoda, processes to produce such molecules, intermediates used in such processes, pesticidal compositions containing such molecules, and processes of using such pesticidal compositions against such pests. These pesticidal compositions may be used, for example, as acaricides, insecticides, miticides, molluscicides, and nematicides. This document discloses molecules having the following formula (“Formula One”).
Abstract:
This disclosure relates to the field of molecules having pesticidal utility against pests in Phyla Arthropoda, Mollusca, and Nematoda, processes to produce such molecules, intermediates used in such processes, pesticidal compositions containing such molecules, and processes of using such pesticidal compositions against such pests. These pesticidal compositions may be used, for example, as acaricides, insecticides, miticides, molluscicides, and nematicides. This document discloses molecules having the following formula (“Formula One”).
Abstract:
4,6-Dibromo-3-hydroxypicolinonitrile may be prepared from furfural in a series of chemical steps selected from cyano-amination, amine salt formation and bromination-rearrangement.
Abstract:
4,6-Dibromo-3-hydroxypicolinonitrile may be prepared from furfural in a series of chemical steps selected from cyano-amination, amine salt formation and bromination-rearrangement. 4-Alkoxy-3-hydroxypicolinic acids may be conveniently prepared from 4,6-dibromo-3-hydroxypicolinonitrile in a series of chemical steps selected from bromo substitution, nitrile hydrolysis and halogen reduction.
Abstract:
Provided herein are 5-fluoro-4-imino-3-(alkyl/substituted alkyl)-1-(arylsulfonyl)-3,4-dihydropyrimidin-2(1H)-one and processes for their preparation which may include the use of an alkali carbonate and an alkylating agent
Abstract:
A fungicidal 4-methoxy-3-acetyloxypicolinamide may be conveniently prepared in processes that include the coupling together of 4-methoxy-3-acetyloxypicolinic acid or 4-methoxy-3-hydroxypicolinic acid with a key 2-aminopropanoate ester derived from a 1,1-bis(4-fluorophenyl)propane-1,2-diol.
Abstract:
This disclosure relates to the field of molecules having pesticidal utility against pests in Phyla Arthropoda, Mollusca, and Nematoda, processes to produce such molecules, intermediates used in such processes, pesticidal compositions containing such molecules, and processes of using such pesticidal compositions against such pests. These pesticidal compositions may be used, for example, as acaricides, insecticides, miticides, molluscicides, and nematicides. This document discloses molecules having the following formula (“Formula One”).