Abstract:
The invention relates to an adhesive composition having an added component of rubber-epoxy such as XNBR-epoxy adducts. It was found that the new adhesive composition significantly reduces meander formation in the making of automotive parts.
Abstract:
An uncured adhesive contains 2 to 10 weight percent of particles of a semi-crystalline organic material, preferably a polyester having a number-average molecular weight of 2000 to 10,000, a hydroxyl number of 10 to 60, and a melting temperature of 50 to 125° C. The adhesive is applied by heating it just prior to application, to melt the particles. After application, the adhesive is cooled to below the melting temperature of the semi-crystalline organic material, and then cured. The process allows the adhesive to be stored and pumped at ambient temperatures, due to the moderate viscosity of the material. Upon melting and re-cooling the semi-crystalline organic material, the adhesive assumes a high yield stress that imparts very good wash-off resistance. In preferred embodiments, the adhesive composition includes an epoxy resin and an epoxy curing agent.
Abstract:
The invention is directed to a toughener for epoxy adhesives, the toughener being a reaction product of a bisphenolic blocked PU toughener with a diglycidyl ether-bisphenol product such liquid DGEBA. The invention includes adhesives comprising the inventive tougheners, methods of using the tougheners and adhesives comprising them, as well as cured inventive adhesives and products comprising them.
Abstract:
The present invention provides low polyphenols (such as bisphenol A) tougheners for epoxy adhesives. The tougheners, and adhesives comprising the tougheners exhibit enhanced viscosity stability, e.g., compared to tougheners prepared from higher amounts of bisphenol A (and epoxy adhesives comprising them).
Abstract:
A 2K epoxy adhesive is provided that has rapid cure time and good strength characteristics. Both the epoxy resin composition and the hardener composition of the 2K epoxy comprise a reactive toughener. Such adhesives are useful in the manufacture and/or repair of large machinery (e.g., automobiles), and are useful for bonding like or unlike materials, such as metal and composites (e.g., carbon fiber or glass fiber composites).
Abstract:
Structural adhesives are prepared from an elastomeric toughener that contains urethane and/or urea groups, and have some terminal isocyanate groups that are capped with a phenol and other terminal isocyanate groups that are capped with a hydroxy-functional acrylate or a hydroxy-functional methacrylate. In certain embodiments, the presence of both types of capping on the toughener leads to higher impact peel strengths and a greater level of cohesive failure, than when the toughener is capped with a phenol an hydroxy-functional acrylate or hydroxy-functional methacrylate alone.
Abstract:
The present invention provides low polyphenols (such as bisphenol A) tougheners for epoxy adhesives. The tougheners, and adhesives comprising the tougheners exhibit enhanced viscosity stability, e.g., compared to tougheners prepared from higher amounts of bisphenol A (and epoxy adhesives comprising them).
Abstract:
Structural adhesives are prepared from an elastomeric toughener that contains urethane and/or urea groups, and have terminal isocyanate groups that are capped with ketoxime compound. The adhesives have very good storage stability and cure to form cured adhesives that have good lap shear and impact peel strengths, even at −40° C.