Abstract:
Embodiments of the present disclosure are directed towards polyol compositions including a dispersion of polyisocyanate polyaddition particles in a carrier polyol, wherein the polyisocyanate polyaddition particles have an average particle diameter from 0.1 to 10.0 microns and the dispersion has a solids content from 5 wt % to 50 wt % based upon a total weight of the dispersion, and a polyester polyol that is from 1 wt % to 98 wt % of the polyol composition based upon a total weight of the polyol composition.
Abstract:
A panel with fire barrier comprises: a metal facing; an insulating foam layer; and at least one fire barrier layer between the metal facing and the foam layer, the fire barrier layer(s) comprising at least one of porous silica; hollow glass microspheres; glass fibres; an inorganic ceramifying composition; a dispersion in a polyurethane polymer matrix or polyurethane/polyisocyanurate polymer matrix or polyurethane/polyurea polymer matrix of expandable graphite. A panel arrangement with fire barrier material in the joint regions between panels, methods of forming the panel and panel arrangement, fire barrier compositions, and reactants for forming the fire barrier compositions are also described.
Abstract:
External thermal insulation composite systems described herein include a concrete or masonry wall and a thermal insulation board on the concrete or masonry wall. The thermal insulation board includes a polyurethane/polyisocyanurate foam having a density of less than 70 kg/m3 according to ASTM D 1622. Methods of preparing the external thermal insulation composite systems and the thermal insulation boards are also described.
Abstract:
External thermal insulation composite systems described herein include a concrete or masonry wall and a multilayer thermal insulation board on the concrete or masonry wall. The multilayer thermal insulation board includes a high density polyurethane layer having a first density from 100 kg/m3 to 2000 kg/mm3 according to ASTM D 1622 and a rigid polyurethane foam having a second density of less than 100 kg/m3 according to ASTM D 1622.
Abstract:
A method of producing a polyurethane based foam that includes providing a ground crop residue having an average particle size of less than 10 mm and that is prepared by grinding crop residues, providing a polyurethane system that includes an isocyanate component and an isocyanate-reactive component, of which the polyurethane system has an isocyanate index from 70 to 350, forming a modified polyurethane system by adding the ground crop residue to the polyurethane system in a range from 1.0 wt % to 20.0 wt %, based on a total weight of the modified polyurethane system, and forming the polyurethane based foam so as to have an applied density from 30 kg/m3 to 75 kg/m3, according to ASTM D-1622, and to have the ground crop residue embedded within polyurethane polymers that are a reaction product of the isocyanate component and the isocyanate-reactive component of the polyurethane system.
Abstract:
Embodiments of the present disclosure are foam formulations. As an example, foam formulation can include a polyol composition having an amine-imitated polyol that is from 10 percent to 20 percent of a total weight of the polyol composition and an additional polyol that is from 80 percent to 90 percent of the total weight of the polyol composition, a polyisocyanate, a blowing catalyst, and a gel catalyst, where a combination of the blowing catalyst and the gel catalyst is from 0.5 percent to 1.5 percent the total weight of the polyol composition and where the blowing catalyst is from 50 percent to 100 percent of a total weight of the blowing catalyst and the gel catalyst.
Abstract:
A process of making a polyurethane or polyisocyanurate foam comprises the step of mixing under low pressure: (A) An isocyanate; (B) A compound reactive with the isocyanate, e.g., a polyol; (C) A liquid blowing agent; and (D) Carbon dioxide.
Abstract:
Embodiments of the present disclosure provide for a composition for forming a polyurethane foam and a method of forming the polyurethane foam using the composition. The polyurethane foam includes a formulated polyol, an isocyanate and a blowing agent. The formulated polyol includes 60 weight percent (wt. %) to 80 wt. % of a polyether polyol and 10 wt. % to 25 wt. % of an aromatic polyester polyol, where the wt. % are based on a total weight of the formulated polyol, and where the formulated polyol has a polyol mixture functionality of 3.8 to 5.5.
Abstract:
A process of making a polyurethane or polyisocyanurate foam comprises the step of mixing under low pressure: (A) An isocyanate; (B) A compound reactive with the isocyanate, e.g., a polyol; (C) A liquid blowing agent; and (D) Carbon dioxide.