Abstract:
Embodiments of the present disclosure are foam formulations. As an example, foam formulation can include a polyol composition having an amine-imitated polyol that is from 10 percent to 20 percent of a total weight of the polyol composition and an additional polyol that is from 80 percent to 90 percent of the total weight of the polyol composition, a polyisocyanate, a blowing catalyst, and a gel catalyst, where a combination of the blowing catalyst and the gel catalyst is from 0.5 percent to 1.5 percent the total weight of the polyol composition and where the blowing catalyst is from 50 percent to 100 percent of a total weight of the blowing catalyst and the gel catalyst.
Abstract:
A continuous process for preparing insulation panels having thick (0.2 mm to 1 mm) metal facing panels and a fiber-reinforced polymer foam core is disclosed. In the process, a bottom metal facing panel is continuously supplied. A mat of reinforcing fibers and a foamable resin composition are applied to the bottom facing panel. A flexible barrier layer is applied atop the foamable resin composition, and the assembly is passed through nip rolls to compress the assembly and force the resin composition into the fiber mat. An adhesive layer and top metallic facing layer are then applied on top of the flexible barrier layer, and the resulting assembly is gauged and cured by passing it through a double band laminator.
Abstract:
A continuous process for preparing insulation panels having thick (0.2 mm to 1 mm) metal facing panels and a fiber-reinforced polymer foam core is disclosed. In the process, a bottom metal facing panel (2) is continuously supplied. A mat (10) of reinforcing fibers and a foamable resin composition (19) are applied to the bottom facing panel. A flexible barrier layer (5) is applied atop the foamable resin composition, and the assembly is passed through nip rolls (12,13) to compress the assembly and force the resin composition into the fiber mat. An adhesive layer (4) and top metallic facing layer (1) are then applied on top of the flexible barrier layer, and the resulting assembly is gauged and cured by passing it through a double band laminator (11).
Abstract:
Formulated polyol compositions include a non-halogenated polyol, a halogenated polyol, a phosphorus-containing flame retardant, an HFO and/or HCFO blowing agent and certain urethane catalysts. The compositions exhibit excellent storage stability. Foams made from the formulated polyol compositions have unexpectedly improved fire performance, as indicated by certain fire tests.
Abstract:
A continuous process for preparing insulation panels having thick (0.2 mm to 1 mm) metal facing panels and a fiber-reinforced polymer foam core is disclosed. In the process, a bottom metal facing panel is continuously supplied. A mat of reinforcing fibers and a foamable resin composition are applied to the bottom facing panel. A flexible barrier layer is applied atop the foamable resin composition, and the assembly is passed through nip rolls to compress the assembly and force the resin composition into the fiber mat. An adhesive layer and top metallic facing layer are then applied on top of the flexible barrier layer, and the resulting assembly is gauged and cured by passing it through a double band laminator.
Abstract:
A method of producing a polyurethane based foam that includes providing a ground crop residue having an average particle size of less than 10 mm and that is prepared by grinding crop residues, providing a polyurethane system that includes an isocyanate component and an isocyanate-reactive component, of which the polyurethane system has an isocyanate index from 70 to 350, forming a modified polyurethane system by adding the ground crop residue to the polyurethane system in a range from 1.0 wt % to 20.0 wt %, based on a total weight of the modified polyurethane system, and forming the polyurethane based foam so as to have an applied density from 30 kg/m3 to 75 kg/m3, according to ASTM D-1622, and to have the ground crop residue embedded within polyurethane polymers that are a reaction product of the isocyanate component and the isocyanate-reactive component of the polyurethane system.
Abstract:
The present invention discloses the production of panels by a discontinuous process. The panels are produced by injecting a polyisocyanurate foam forming composition into the mold cavity at reduced pressure. The combination of certain polyisocyanurate foam forming formulation and the reduced pressure in the mold cavity allows production of and resulting sandwich panels in a discontinuous process where the produced panels are characterized by improved fire resistance.
Abstract:
Embodiments of the present disclosure are foam formulations. As an example, foam formulation can include a polyol composition having an amine-imitated polyol that is from 10 percent to 20 percent of a total weight of the polyol composition and an additional polyol that is from 80 percent to 90 percent of the total weight of the polyol composition, a polyisocyanate, a blowing catalyst, and a gel catalyst, where a combination of the blowing catalyst and the gel catalyst is from 0.5 percent to 1.5 percent the total weight of the polyol composition and where the blowing catalyst is from 50 percent to 100 percent of a total weight of the blowing catalyst and the gel catalyst.
Abstract:
The present invention discloses the production of panels by a discontinuous process. The panels are produced by injecting a polyisocyanurate foam forming composition into the mold cavity at reduced pressure. The combination of certain polyisocyanurate foam forming formulation and the reduced pressure in the mold cavity allows production of and resulting sandwich panels in a discontinuous process where the produced panels are characterized by improved fire resistance.
Abstract:
Embodiments of the present disclosure provide for a composition for forming a polyurethane foam and a method of forming the polyurethane foam using the composition. The polyurethane foam includes a formulated polyol, an isocyanate and a blowing agent. The formulated polyol includes 60 weight percent (wt. %) to 80 wt. % of a polyether polyol and 10 wt. % to 25 wt. % of an aromatic polyester polyol, where the wt. % are based on a total weight of the formulated polyol, and where the formulated polyol has a polyol mixture functionality of 3.8 to 5.5.