Abstract:
The present invention provides polymer blends that can be used in a multilayer structure and to multilayer structures including one or more layers formed from such blends. In one aspect, a polymer blend includes a copolymer including ethylene and at least one of acrylic acid and methacrylic acid having an acid content greater than 4 and up to 25 weight percent based on the weight of the copolymer and having a melt index (I.sub.2) of 1 to 60 g/10 minutes, wherein the total amount of ethylene acrylic acid copolymer and ethylene methacrylic acid copolymer includes 45 to 99 weight percent of the blend based on the total weight of the blend, and a polyolefin having a density of 0.870 g/cm.sup.3 or more and having a melt index (I.sub.2) of 20 g/10 minutes or less, wherein the polyolefin includes 1 to 55 weight percent of the blend based on the total weight of the blend.
Abstract:
The present invention relates generally to methods of preparing vinylidene chloride polymer compositions. In one embodiment, a method of preparing a vinylidene chloride polymer composition comprises (a) adding a first dispersion comprising a wax, a polyolefin or a combination thereof to an aqueous dispersion comprising vinylidene chloride polymer particles; (b) adding an acrylic polymer latex to the aqueous dispersion; and (c) coagulating the wax, the polyolefin, or the combination of the wax and polyolefin, and the acrylic polymer on the surface of the polymer particles.
Abstract:
An electronic device comprises a first encapsulating film in direct contact with a light-receiving and transmitting film and a second encapsulating film in direct contact with a back sheet. The first encapsulating film has a zero shear viscosity greater than that of the second encapsulating film. The back sheet of the electronic device contains fewer bumps than the back sheet of a comparable electronic device having a first encapsulating film with a zero shear viscosity less than or equal to that of the second encapsulating film.
Abstract:
A multilayer encapsulant film having at least two layers includes a first layer comprising an encapsulant resin, and a second layer comprising an encapsulant resin and at least one down-converter, such as a rare-earth organometallic complex. The down-converter may be present in an amount of at least 0.0001 wt % based on the total weight of the encapsulant film. Further layers of a multilayer encapsulant film may or may not include a down-converter. Preferably, a multilayer encapsulant film contains at least one layer with at least one down-converter and at least one layer without a down-converter. Such multilayer down-converting films may be used in an electronic device, such as a PV module.
Abstract:
An electronic device module comprising: A. At least one electronic device, e.g., a solar cell, and B. A polymeric material in intimate contact with at least one surface of the electronic device, the polymeric material comprising (1) a polyolefin copolymer with at least one of (a) a density of less than about 0.90 g/cc, (b) a 2% secant modulus of less than about 150 megaPascal (mPa) as measured by ASTM D-882-02), (c) a melt point of less than about 95 C, (d) an ∀-olefin content of at least about 15 and less than about 50 wt % based on the weight of the polymer, (e) a Tg of less than about −35 C, and (f) a SCBDI of at least about 50, (2) optionally, free radical initiator, e.g., a peroxide or azo compound, or a photoinitiator, e.g., benzophenone, and (3) optionally, a co-agent. Typically, the polyolefin copolymer is an ethylene/∀-olefin copolymer. Optionally, the polymeric material can further comprise a vinyl silane and/or a scorch inhibitor, and the copolymer can remain uncrosslinked or be crosslinked.
Abstract:
Embodiments of a polyethylene composition are provided, which may include a first polyethylene fraction comprising at least one peak in a temperature range of from 40 C to 75 C in an elution profile via improved comonomer composition distribution (iCCD) analysis method, where a first polyethylene area fraction is an area in the elution profile from 40 C to 75 C, and where the first polyethylene fraction area comprises from 45% to 65% of the total area of the elution profile; and a second polyethylene fraction comprising at least one peak in a temperature range of from 85 C to 110 C in the elution profile, where a second polyethylene area fraction is an area in the elution profile from 85 C to 110 C, and where the second polyethylene fraction area comprises from 15% to 35% of the total area of the elution profile, wherein the polyethylene composition has a density of 0.905 g/cm3 to 0.918 g/cm3, a melt index (I2) of 0.7 g/10 minutes to 3.5 g/10 minutes, and wherein the composition has a melt index ratio (I10/I2) that meets the following equation: I10/I2
Abstract:
A low-density polyethylene having a melt strength measured at 190 C that is greater than or equal to 5.5 cN, a density that is greater than or equal to 0.9210 g/cm3 and less than or equal to 0.9275 g/cm3, and, and a melt index I2 measured at 190° C. that is greater than or equal to 4.5 g/10 min.
Abstract:
A multilayer encapsulant film having at least two layers includes a first layer comprising an encapsulant resin, and a second layer comprising an encapsulant resin and at least one down-converter, such as a rare-earth organometallic complex. The down-converter may be present in an amount of at least 0.0001 wt % based on the total weight of the encapsulant film. Further layers of a multilayer encapsulant film may or may not include a down-converter. Preferably, a multilayer encapsulant film contains at least one layer with at least one down-converter and at least one layer without a down-converter. Such multilayer down-converting films may be used in an electronic device, such as a PV module.
Abstract:
An electronic device comprises a first encapsulating film in direct contact with a light-receiving and transmitting film and a second encapsulating film in direct contact with a back sheet. The first encapsulating film has a zero shear viscosity greater than that of the second encapsulating film. The back sheet of the electronic device contains fewer bumps than the back sheet of a comparable electronic device having a first encapsulating film with a zero shear viscosity less than or equal to that of the second encapsulating film.
Abstract:
Disclosed in more detail in this application are ethylene interpolymer films having one or more layers, comprising surface layer comprising: (A) a silane-containing ethylene interpolymer comprising (1) an ethylene interpolymer having a density of less than 0.905 g/cm3, and (2) at least 0.1 percent by weight alkoxysilane; characterized by: (3) having a volume resistivity of greater than 5×1015 ohm-cm as measured at 60 C. In one embodiment, such ethylene interpolymer has a residual boron content of less than 10 ppm and residual aluminum content of less than 100 ppm. Also disclosed are laminated electronic device modules comprising: A. at least one electronic device, and B. one of the ethylene interpolymer films as described above in intimate contact with at least one surface of the electronic device. Such laminated electronic device modules according to the invention have been shown to suffer reduced potential induced degradation (“PID”).