Abstract:
Disclosed in more detail in this application are ethylene interpolymer films having one or more layers, comprising surface layer comprising: (A) a silane-containing ethylene interpolymer comprising (1) an ethylene interpolymer having a density of less than 0.905 g/cm3, and (2) at least 0.1 percent by weight alkoxysilane; characterized by: (3) having a volume resistivity of greater than 5×1015 ohm-cm as measured at 60 C. In one embodiment, such ethylene interpolymer has a residual boron content of less than 10 ppm and residual aluminum content of less than 100 ppm. Also disclosed are laminated electronic device modules comprising: A. at least one electronic device, and B. one of the ethylene interpolymer films as described above in intimate contact with at least one surface of the electronic device. Such laminated electronic device modules according to the invention have been shown to suffer reduced potential induced degradation (“PID”).
Abstract:
An electronic device comprises a first encapsulating film in direct contact with a light-receiving and transmitting film and a second encapsulating film in direct contact with a back sheet. The first encapsulating film has a zero shear viscosity greater than that of the second encapsulating film. The back sheet of the electronic device contains fewer bumps than the back sheet of a comparable electronic device having a first encapsulating film with a zero shear viscosity less than or equal to that of the second encapsulating film.
Abstract:
An electronic device comprises a first encapsulating film in direct contact with a light-receiving and transmitting film and a second encapsulating film in direct contact with a back sheet. The first encapsulating film has a zero shear viscosity greater than that of the second encapsulating film. The back sheet of the electronic device contains fewer bumps than the back sheet of a comparable electronic device having a first encapsulating film with a zero shear viscosity less than or equal to that of the second encapsulating film.
Abstract:
The present disclosure provides a photovoltaic module. In an embodiment, the photovoltaic module includes a photovoltaic cell, and a layer composed of a film. The film includes a silane-grafted polyolefin (Si-g-PO) resin composition comprising (i) one or more silane grafted polyolefins and (ii) from greater than 0 wt % to less than 5.0 wt % of a micronized silica gel, based on the total weight of the Si-g-PO resin composition. The film has a glass adhesion greater than or equal to 15 N/mm after aging the film at 40° C. and 0% relative humidity for 60 days as measured in accordance with ASTM F88/88M-09.
Abstract:
PV modules with improved volume resistivity comprise an encapsulant film and a polyolefin backsheet at least one of which comprises organoclay.
Abstract:
An electronic device comprises a first encapsulating film in direct contact with a light-receiving and transmitting film and a second encapsulating film in direct contact with a back sheet. The first encapsulating film has a zero shear viscosity greater than that of the second encapsulating film. The back sheet of the electronic device contains fewer bumps than the back sheet of a comparable electronic device having a first encapsulating film with a zero shear viscosity less than or equal to that of the second encapsulating film.
Abstract:
A polyethylene-based polymer composition suitable for use in a shrink film, the polyethylene-based polymer composition comprising a low density polyethylene having a density of from 0.917 g/cc to 0.935 g/cc and melt index, I2, of from 0.1 g/10 min to 5 g/10 min, a linear low density polyethylene having a density of from 0.900 g/cc to 0.965 g/cc and melt index, I2, of from 0.05 g/10 min to 15 g/10 min, or combinations thereof, a material that absorbs radiation in the near-infrared, visible, and ultraviolet spectral wavelength ranges, and optionally, a medium density polyethylene, a high density polyethylene, or combinations thereof.
Abstract:
Disclosed in more detail in this application are ethylene interpolymer films having one or more layers, comprising surface layer comprising: (A) a silane-containing ethylene interpolymer comprising (1) an ethylene interpolymer having a density of less than 0.905 g/cm3, and (2) at least 0.1 percent by weight alkoxysilane; characterized by: (3) having a volume resistivity of greater than 5×1015 ohm-cm as measured at 60 C. In one embodiment, such ethylene interpolymer has a residual boron content of less than 10 ppm and residual aluminum content of less than 100 ppm. Also disclosed are laminated electronic device modules comprising: A. at least one electronic device, and B. one of the ethylene interpolymer films as described above in intimate contact with at least one surface of the electronic device. Such laminated electronic device modules according to the invention have been shown to suffer reduced potential induced degradation (“PID”).