Abstract:
A single-layer or multilayer film formed from one or more polymeric materials has CIE colour values a* and b* such that −7≤a*≤0, −15≤b*≤0 and an optical transmission T such that 60%≤T≤95%. The inventive transparent films provide discoloration compensation that alleviates yellowing caused by UV light.
Abstract:
The invention pertains to an improved PVDC composition including certain cinnamate dienophiles qualified for food contact, which possess an optimized balance of effectiveness in preventing discoloration upon exposure to radiation, with no negative impact on the barrier properties, in particular cinnamates of formula (I), wherein: —each of R1, R2, R3, equal to or different from each other, is H or a C1-C12 hydrocarbon group, to layers made therefrom, to multi-layer assemblies comprising the same, and to the use of said assemblies for packaging, in particular for packaging foodstuffs.
Abstract:
The invention pertains to an improved PVDC composition including certain dienophiles qualified for food contact, which possess an optimized balance of effectiveness in preventing discoloration upon exposure to radiation, with no negative impact on the barrier properties, in particular sorbate esters of formula (I), wherein R1 is a C1-C12 hydrocarbon group, preferably a C1-C6 alkyl group, to layers made therefrom, to multi-layer assemblies comprising the same, and to the use of said assemblies for packaging, in particular for packaging foodstuffs.
Abstract:
A polymer blend including a vinylidene chloride interpolymer; an ethylene-acrylate interpolymer; and optionally one or more additives selected from the group consisting of stabilizers, plasticizers, and processing aids is provided. Also provided is an extruded film and a packaging or container which includes the film.
Abstract:
The present invention is directed to a polymer blend formulation and to heat shrinkable film, bags, pouches and the like made therefrom. The invention is further directed to a method of producing a heat shrinkable film with the proper gas permeability properties so that it is ideal for packaging and preservation of gassing cheese.
Abstract:
A multi-stage emulsion processing aid polymer comprising one or more functionalized ethylenically unsaturated monomer into the emulsion polymerization reactor, wherein the functionality is selected from the group consisting of β-keto esters, β-keto amides, β-diketones, cyanoacetic esters, malonates, nitroalkanes, β-nitro esters, sulfonazides, thiols, thiol-s-triazines, and amine, where the functionality is incorporated into polymers by polymerizing, ethylenically unsaturated monomers containing these functionalities or by post functionalization of a polymer with additional reactions after polymerization in one of the first or second stages. Foamable halogenated polymers comprising the multi-stage emulsion processing aid polymer is also provided. Also provided are methods for making the multi-stage emulsion processing aid polymer and foamable halogenated polymers.
Abstract:
A multi-stage emulsion processing aid polymer comprising one or more functionalized ethylenically unsaturated monomer into the emulsion polymerization reactor, wherein the functionality is selected from the group consisting of β-keto esters, β-keto amides, β-diketones, cyanoacetic esters, malonates, nitroalkanes, β-nitro esters, sulfonazides, thiols, thiol-s-triazines, and amine, where the functionality is incorporated into polymers by polymerizing, ethylenically unsaturated monomers containing these functionalities or by post functionalization of a polymer with additional reactions after polymerization in one of the first or second stages. Foamable halogenated polymers comprising the multi-stage emulsion processing aid polymer is also provided. Also provided are methods for making the multi-stage emulsion processing aid polymer and foamable halogenated polymers.
Abstract:
Solid additive particles are added to solid vinylidene chloride (VDC) polymer particles by a process comprising the steps of: A. Polymerizing VDC monomer, optionally with one or more mono-ethylenically unsaturated comonomers, in a polymerization zone under polymerization conditions to form solid VDC polymer particles; B. Stopping the polymerization of the VDC monomers after formation of the solid VDC polymer particles; and C. Contacting the solid VDC polymer particles with the solid additive particles (i) before the solid VDC polymer particles are de-watered, and (ii) at a temperature sufficient to melt or soften the solid additives particles but insufficient to melt or soften the solid VDC polymer particles such that the melted or softened solid additive particles adhere to the solid VDC polymer particles upon contact.
Abstract:
Barrier films made from a composition comprising vinylidene chloride (VDC) interpolymer and poly(butylene succinate) (PBS) exhibit improved tear resistance in both the machine and cross directions without a significant deterioration in oxygen transmission rate as compared to barrier films made under like conditions and from a composition alike in all respects except that the PBS is replaced with additional VDC interpolymer.
Abstract:
A vinyl chloride-based copolymer porous body contains a vinyl chloride-based copolymer as the main component. The vinyl chloride-based copolymer porous body has continuous pores having a pore size of 0.1 to 40 μm, the pores have a skeletal diameter of 0.1 to 20 μm, and the vinyl chloride-based copolymer has a thickness of 1 mm or more. Such a vinyl chloride-based copolymer porous body can be produced by a production method including the steps of: heating and dissolving the vinyl chloride-based copolymer in a solvent to obtain a vinyl chloride-based copolymer solution; cooling the vinyl chloride-based copolymer solution to obtain a precipitated product; and separating and drying the product to obtain a porous body containing the vinyl chloride-based copolymer as the main component.