摘要:
A semiconductor fabrication process includes forming a gate electrode (120) overlying a gate dielectric (110) overlying a semiconductor substrate (102). First spacers (124) are formed on sidewalls of the gate electrode (120). First s/d trenches (130) are formed in the substrate (102) using the gate electrode (120) and first spacers (124) as a mask. The first s/d trenches (130) are filled with a first s/d structure (132). Second spacers (140) are formed on the gate electrode (120) sidewalls adjacent the first spacers (124). Second s/d trenches (150) are formed in the substrate (102) using the gate electrode (120) and the second spacers (140) as a mask. The second s/d trenches (150) are filled with a second s/d structure (152). Filling the first and second s/d trenches (130, 150) preferably includes growing the s/d structures using an epitaxial process. The s/d structures (132, 152) may be stress inducing structures such as silicon germanium for PMOS transistors and silicon carbon for NMOS transistors.
摘要:
A method of introducing conjugated caps onto molecular fragments is described. A first molecule may be decomposed or cut into molecular fragments. Molecular caps may then be introduced in the form of conjugated caps onto the molecular fragments at the decomposition points to form molecular portions. The interaction energy between the molecular portion and a second molecule can then be calculated. This scheme, termed molecular fractionation with conjugated caps, makes it possible and practical to carry out full quantum mechanical (ab initio) calculation of intermolecular interaction energies involving molecules, such as proteins or other biological molecules.
摘要:
A method of conducting smooth motor startup is provided and includes operating a motor in an open loop control scheme at startup, operating the motor in a closed loop sensorless control scheme at a time after startup and transitioning between the open loop control scheme and the closed loop control scheme by reducing a difference between an estimated rotor angle of the motor and a commanded ramping angle of the motor.
摘要:
A first transistor and a second transistor are formed with different threshold voltages. A first gate is formed over the first region of a substrate for a first transistor and a second gate over the second region for a second transistor. The first region is masked. A threshold voltage of the second transistor is adjusted by implanting through the second gate while masking the first region. Current electrode regions are formed on opposing sides of the first gate and current electrode regions on opposing sides of the second gate.
摘要:
A method and structure implant a first-type impurity within a substrate to form a channel region within the substrate adjacent a top surface of the substrate; form a gate stack on the top surface of the substrate above the channel region; and implant a second-type impurity within the substrate to form source and drain regions within the substrate adjacent the top surface. The channel region is positioned between the source and drain regions. The second-type impurity has an opposite polarity with respect to the first-type impurity. The method and structure implant a greater concentration of the first-type impurity, relative to a concentration of the first-type impurity within the channel region, to form a primary body doping region within the substrate below (relative to the top surface) the channel region; and to form secondary body doping regions within the substrate below (relative to the top surface) the source and drain regions.
摘要:
A transistor structure is formed by providing a semiconductor substrate and providing a gate above the semiconductor substrate. The gate is separated from the semiconductor substrate by a gate insulating layer. A source and a drain are provided adjacent the gate to define a transistor channel underlying the gate and separated from the gate by the gate insulating layer. A barrier layer is formed by applying nitrogen or carbon on opposing outer vertical sides of the transistor channel between the transistor channel and each of the source and the drain. In each of the nitrogen and the carbon embodiments, the vertical channel barrier retards diffusion of the source/drain dopant species into the transistor channel. There are methods for forming the transistor structure.
摘要:
A transistor structure is formed by providing a semiconductor substrate and providing a gate above the semiconductor substrate. The gate is separated from the semiconductor substrate by a gate insulating layer. A source and a drain are provided adjacent the gate to define a transistor channel underlying the gate and separated from the gate by the gate insulating layer. A barrier layer is formed by applying nitrogen or carbon on opposing outer vertical sides of the transistor channel between the transistor channel and each of the source and the drain. In each of the nitrogen and the carbon embodiments, the vertical channel barrier retards diffusion of the source/drain dopant species into the transistor channel. There are methods for forming the transistor structure.
摘要:
A stress memorization technique (SMT) film is deposited over a semiconductor device. The SMT film is annealed with a low thermal budget anneal that is sufficient to create and transfer the stress of the SMT film to the semiconductor device. The SMT film is then removed. After the SMT film is removed, a second anneal is applied to the semiconductor device sufficiently long and at a sufficiently high temperature to activate dopants implanted for forming device source/drains. The result of this approach is that there is minimal gate dielectric growth in the channel along the border of the channel.
摘要:
A method for forming a semiconductor device is provided. The method includes forming a semiconductor layer. The method further includes forming a gate structure overlying the semiconductor layer. The method further includes forming a high-k sidewall spacer adjacent to the gate structure. The method further includes forming a recess in the semiconductor layer, the recess aligned to the high-k sidewall spacer. The method further includes forming an in-situ doped epitaxial material in the recess, the epitaxial material having a natural lattice constant different from a lattice constant of the semiconductor layer to create stress in a channel region of the semiconductor device.
摘要:
A semiconductor process and apparatus includes forming NMOS and PMOS transistors (24, 34) with enhanced hole mobility in the channel region of a transistor by selectively relaxing part of a biaxial-tensile strained semiconductor layer (90) in a PMOS device area (97) to form a relaxed semiconductor layer (91), and then epitaxially growing a bi-axially stressed silicon germanium channel region layer (22) prior to forming the NMOS and PMOS gate structures (26, 36) overlying the channel regions, and then depositing a contact etch stop layer (53-56) over the NMOS and PMOS gate structures. Embedded silicon germanium source/drain regions (84) may also be formed adjacent to the PMOS gate structure (70) to provide an additional uni-axial stress to the bi-axially stressed channel region.