摘要:
In a contact structure to a source/drain region (28) nearby a gate electrode (22), a contact sidewall through a thick dielectric is laterally displaced away from the S/D region to widen the contact; the contact sidewall is located over the gate electrode A remnant (60a) of a doped silicon layer overlies the S/D and rises up along the sidewall of gate electrode insulation and onto insulation atop the gate electrode, and is insulated from the gate electrode thereby. The doped silicon acting as a dopant for the source/drain region. A nitride, preferably Si.sub.3 N.sub.4, is located under the thick dielectric and over part of the gate electrode insulation. The Si.sub.3 N.sub.4 adjoins the doped silicon to enclose the top and sides of the gate electrode with nitride. The bottom of the contact is formed by the doped silicon at some locations and by the nitride at other locations. The contact sidewall through the thick dielectric preferably overlies the Si.sub.3 N.sub.4 but not the doped silicon. The doped silicon is effective as a dry etch stop and a wet etch stop, and the silicon nitride is effective as an isotropic etch stop. The doped silicon is wholly contained within the contact, and the nitride extends beyond said contact.
摘要翻译:在与栅电极(22)附近的源极/漏极区(28)的接触结构中,通过厚电介质的接触侧壁横向移位远离S / D区域以扩大触点; 接触侧壁位于栅电极A上方,掺杂硅层的残留物(60a)覆盖在S / D上,并且沿着栅电极绝缘体的侧壁上升并且上升到栅电极顶部的绝缘体上,从而与栅电极绝缘 。 掺杂硅充当源/漏区的掺杂剂。 氮化物,优选Si 3 N 4,位于厚电介质和栅电极绝缘体的一部分之下。 Si3N4与掺杂硅相邻,以氮化物包围栅电极的顶部和侧面。 接触的底部由一些位置处的掺杂硅和其它位置处的氮化物形成。 通过厚电介质的接触侧壁优选覆盖Si 3 N 4而不是掺杂的硅。 掺杂硅作为干蚀刻停止和湿蚀刻停止是有效的,并且氮化硅作为各向同性蚀刻停止是有效的。 掺杂硅完全包含在触点内,并且氮化物延伸超过所述触点。
摘要:
Polarization retention of a ferroelectric material in a memory cell is improved by open circuiting the write pulse. The depolarizing field is reduced by allowing charge to dissipate through the ferroelectric material, causing a polarizing field.
摘要:
One embodiment sets forth a technique for measuring chromatic dispersion using reference signals within the operational range of amplifiers used to refresh data signals. One red/blue laser pair in the transmission node is used for measuring dispersion and chromatic dispersion compensation is added at each line node in the system. Since reference and data signals propagate through each amplifier, the reference signals used to measure chromatic dispersion receive the same dispersion compensation (and will have the same residual dispersion) as the data signals. Therefore, any residual dispersion in the data signals will manifest itself in downstream dispersion measurements and, thus, can be corrected. The tunable dispersion compensator in each line node may be set to compensate for the measured dispersion, thereby compensating for both the chromatic dispersion of the link connecting the current node to the prior node and any uncorrected residual dispersion from prior nodes.
摘要:
A high-speed, low-power input buffer for an integrated circuit device in which the input voltage (VIN) is coupled to both a pull-up and a pull-down transistor. In accordance with a specific embodiment, the input buffer utilizes a reference voltage input (VREF) during a calibration phase of operation but not when in an active operational mode. A maximum level of through current is supplied when VIN=VREF with lower levels of through current at all other VIN voltages. In an integrated circuit device incorporating an input buffer as disclosed, two (or more) input buffers may be utilized per device input pin.
摘要:
A reduced area dynamic random access memory (DRAM) cell and method for fabricating the same wherein the cell occupies an area smaller than one photolithography pitch by two photolithography pitches through the formation of sidewall spacers along a first pattern to define a first portion of the active region of the memory cell and a second orthogonally oriented pattern to define a second portion of the active region of the memory cell thereby creating a ladder shaped active region for a column of the memory cells.
摘要:
A temperature sensing and monitoring technique for integrated circuit devices, particularly dynamic random access memory (DRAM), which incorporates the comparison of a voltage inversely proportional to temperature to a voltage proportional to temperature thereby increasing the differential voltage vs. temperature. In a representative embodiment disclosed herein, these two voltages are designed to be equal at a given temperature and a comparison circuit produces a signal that changes from a logic level “high” to a logic level “low” at that given temperature. An additional transistor in each trip point current path forces the gate-to-source and drain-to-source voltage of current mirror transistors to be equal at the temperature trip points.
摘要:
A static random access memory (SRAM) compatible, high availability memory array and method employing synchronous dynamic random access memory (DRAM) in conjunction with a single DRAM cache and tag provides a memory architecture comprising low cost DRAM memory cells that is available for system accesses 100% of the time and is capable of executing refreshes frequently enough to prevent data loss. Any subarray of the memory can be written from cache or refreshed at the same time any other subarray is read or written externally.
摘要:
A dual access DRAM includes first and second sets of data lines. By adding a second set of multiplexing transistors to data lines that are controlled with timing and addressing similar to an existing set of multiplexing transistors, data can be transferred to a second subarray by way of an additional set of data lines. The second set of data lines are additional internal read/write lines used in addition to the normal set of data lines. The second set of data lines are designed to have short lengths with correspondingly low capacitance so that additional loading on the sense amplifiers is small.
摘要:
An integrated circuit transistor body bias regulation circuit and method of especial applicability with respect to low voltage applications wherein the threshold voltage (Vt) of certain transistors is lowered at low power supply voltage (VCC) levels, low temperature and/or high Vt process conditions to assure adequate transistor drive but may also be raised at high VCC levels, high temperature and/or low Vt process conditions to reduce leakage current. In this manner, circuit speed that is closer to constant (versus VCC, temperature and process variation) is thereby achieved.