Abstract:
Provided are a waveguide with a reduced phase error and a photonics device including the same. The waveguide structure may include a lower clad, a core pattern with at least one bending region, on the lower clad, a beam deflecting pattern on the core pattern, and an upper clad covering the core pattern provided with the beam deflecting pattern. The beam deflecting pattern may be formed of a material, whose refractive index may be higher than that of the upper clad and may be lower than or equivalent to that of the core pattern, and the beam deflecting pattern has an increasing and decreasing width or an oscillating width, when measured along the bending region.
Abstract:
An optical filter of the inventive concept includes a slab waveguide disposed on a substrate, an input guide gate and an output guide gate spaced apart from each other in the slab waveguide, and an echelle grating filter disposed in the slab waveguide. The echelle grating filter has curvature and extends in a first direction. The echelle grating filter has gratings of sawtooth shape on one surface thereof. Light inputted through the input guide gate is totally reflected at the echelle grating filter by one reflecting process.
Abstract:
Disclosed are a sub-mount, an optical modulation module, and an optical communication device. The sub-mount includes a mount substrate, a signal electrode extending in a first direction on the mount substrate, and a ground electrode separated from the signal electrode and disposed on the mount substrate. Here, the ground electrode includes a lower electrode disposed on a bottom surface of the mount substrate and upper electrodes disposed on one side of the mount substrate and connected to the lower electrode through a side surface or the inside of the mount substrate.
Abstract:
Provided are an optical coupling device and a method for manufacturing the same. The optical coupling device includes a first waveguide including a first forward tapered part, a second waveguide disposed on the first waveguide and including a first reverse tapered part in a direction opposite to the first forward tapered part, and an interlayer waveguide disposed between the first and second waveguides and having a thickness corresponding to a distance between the first forward tapered part and the first reverse tapered part.
Abstract:
Provided is an optical coupler including a substrate, a buffer layer on the substrate, a ridge waveguide having a first side surface and a second side surface opposed to the first side surface, and a first waveguide disposed adjacent to the second side surface. The first waveguide includes a first body part and a first connecting part extending from one end of the first body part to be inserted in the ridge waveguide. The first connecting part has a width decreasing in the direction away from the second side surface, and the ridge waveguide includes an extension part extending under an upper surface of the buffer layer.
Abstract:
Provided is a wavelength division device. The wavelength division device includes input arrayed waveguides, an input circular grating coupler connected to one ends of the input arrayed waveguides and configured to refract first light having a plurality of wavelengths and output the refracted first light to each of the one ends of the input arrayed waveguides as plurality of second light, and an output star coupler connected to the other ends of the input arrayed waveguides and configured to receive the plurality of second light from the other ends of the input arrayed waveguides and output optical signals that are divided for each wavelength. The input circular grating coupler includes a plurality of circular gratings.
Abstract:
Disclosed are an optical input/output device and an opto-electronic system including the same. The device includes a bulk silicon substrate, at least one vertical-input light detection element monolithically integrated on a portion of the bulk silicon substrate, and at least one vertical-output light source element monolithically integrated on another portion of the bulk silicon substrate adjacent to the vertical-input light detection element. The vertical-output light source element includes a III-V compound semiconductor light source active layer combined with the bulk silicon substrate by a wafer bonding method.
Abstract:
Provided is an optical switch including a substrate, a first optical waveguide disposed on the substrate and having a conductive portion disposed on one surface thereof, and a second optical waveguide disposed on the substrate being spaced apart from the first optical waveguide and having an electrode portion disposed on one surface thereof. The electrode portion and the conductive portion face each other. The electrode portion controls an optical field between the first optical waveguide and the second optical waveguide.
Abstract:
Provided is a thermo-optic optical switch including an input waveguide configured to receive an optical signal, an output waveguide configured to output the optical signal, branch waveguides branching from the input waveguide to be connected to the output waveguide, and heater electrodes disposed on the branch waveguides and configured to heat the branch waveguides, wherein the branch waveguides includes first and second phase shifters having first and second thermo-optic coefficients of opposite signs.
Abstract:
Provided are a semiconductor device and a method for manufacturing the same. The semiconductor device according to an embodiment of the inventive concept includes a first semiconductor chip having a recess portion in one surface thereof; a first adhesion pattern filled within the recess portion of the first semiconductor chip; and a second semiconductor chip disposed on the first adhesion pattern. The second semiconductor chip may represent improved heat dissipation characteristics.