Abstract:
An adsorption structure is described that includes at least one adsorbent member formed of an adsorbent material and at least one porous member provided in contact with a portion of the adsorbent member to allow gas to enter and exit the portion of the adsorbent member. Such adsorption structure is usefully employed in adsorbent-based refrigeration systems. A method also is described for producing an adsorbent material, in which a first polymeric material provided having a first density and a second polymeric material is provided having a second density, in which the second polymeric material is in contact with the first polymeric material to form a structure. The structure is pyrolyzed to form a porous adsorbent material including a first region corresponding to the first polymeric material and a second region corresponding to the second polymeric material, in which at least one of the pore sizes and the pore distribution differs between the first region and the second region.
Abstract:
Compositions useful for the selective removal by etching of silicon-germanium-containing materials relative to silicon-containing materials, from a microelectronic device having features containing these materials at a surface, the compositions containing hydrofluoric acid, acetic acid, hydrogen peroxide, and at least one additional acid that will improve performance as measured by one or more of an etching rate or selectivity and are tunable to achieve the required Si:Ge removal selectivity and etch rates.
Abstract:
Etchant compositions for selective etching of silicon nitride in the presence of silicon oxide and polysilicon are provided. The etchant compositions may achieve passivation of at least one of silicon oxide, polysilicon, or any combination thereof, while selectively etching silicon nitride, in a single step by applying the etchant composition to a substrate. The etchant compositions may comprise at least 60% by weight of phosphoric acid based on a total weight of the etchant composition; at least 1% by weight of water based on the total weight of the etchant composition; and no greater than 2% by weight of a metal oxidizer based on the total weight of the etchant composition.
Abstract:
Compositions useful for the selective removal by etching of silicon-germanium-containing materials relative to silicon-containing materials, from a microelectronic device having features containing these materials at a surface, the compositions containing hydrofluoric acid, acetic acid, hydrogen peroxide, and at least one additional acid that will improve performance as measured by one or more of an etching rate or selectivity and are tunable to achieve the required Si:Ge removal selectivity and etch rates.
Abstract:
Compositions useful for the selective removal by etching of silicon-germanium-containing materials relative to silicon-containing materials, from a microelectronic device having features containing these materials at a surface, the compositions containing hydrofluoric acid, acetic acid, hydrogen peroxide, and at least one additional acid that will improve performance as measured by one or more of an etching rate or selectivity and are tunable to achieve the required Si:Ge removal selectivity and etch rates.
Abstract:
The invention provides a composition and method for improving the selectivity of nitride etching versus oxide etching and can be used with conventional phosphoric acid wet etch compositions. The invention describes additives that serve to inhibit silicon, oxides, and related compounds regrowth (i.e., redeposition) on the silicon oxide surface. In certain embodiments, the invention provides certain amino-substituted aryl compounds which are bound to a tri-alkoxy silane.
Abstract:
The invention provides a composition and method for improving the selectivity of nitride etching versus oxide etching and can be used with conventional phosphoric acid wet etch compositions. The invention describes additives that serve to inhibit silicon, oxides, and related compounds regrowth (i.e., redeposition) on the silicon oxide surface. In certain embodiments, the invention provides certain amino-substituted aryl compounds which are bound to a tri-alkoxy silane.
Abstract:
A full fill trench structure is described, including a microelectronic device substrate having a high aspect ratio trench therein and filled with silicon dioxide of a substantially void-free character and substantially uniform density throughout its bulk mass. A method of manufacturing a semiconductor product also is described, involving use of specific silicon precursor compositions for forming substantially void-free and substantially uniform density silicon dioxide material in the trench. The precursor fill composition may include silicon and germanium, to produce a microelectronic device structure including a GeO2/SiO2 trench fill material. A suppressor component may be employed in the precursor fill composition, to eliminate or minimize seam formation in the cured trench fill material.